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Abstract
Given a bankruptcy problem, the core-center rule selects the mean value of all the award vectors

bounded from below by the minimal rights and from above by the truncated claims, that is, the center
of gravity of the core of the associated bankruptcy game. We show that this rule satisfies a good number
of properties so as to be included in the inventory of solutions for this class of problems, among them,
homogeneity, continuity, self-duality, claim monotonicity, and order preservation. As in other contexts
where the center of gravity plays an important role in studying certain properties of a system, the core-
center rule provides a great insight on the behavior of the core of a bankruptcy game. In particular, we
analyze in detail how the core changes when the initial endowment increases, and prove several additional
properties that the core-center rule satisfies: endowment monotonicity, population monotonicity, other-
regarding claim monotonicity and 1

|N| -truncated-claims lower bounds on awards.

Keywords: bankruptcy problems, bankruptcy games, core, core-center rule

1 Introduction
A bankruptcy problem arises when a scarce resource, or initial endowment, has to be shared among a set of
claimants, with the same rights, that claim different amounts of it and with the condition that the endowment
is not sufficient to fully satisfying all the requests. The question is, how to select a division between the
claimants of the amount available. Formally, a rule is a function that associates with each bankruptcy
problem an awards vector whose coordinates add up to the endowment and such that no claimant should
be asked to pay and no claimant should be awarded more than her claim. There are several rules that are
commonly used in practice or discussed in theoretical work, for instance, the proportional rule, the constrained
equal awards rule, the constrained equal losses rule, the Talmud rule, and the random arrival rule. Some
of these rules have a direct definition that has some sort of an intuitive appeal. Other rules are selected
according to the properties that they satisfy or violate. Thomson (2019) provides a comprehensive survey of
the rules and the relevant properties.

Another way of defining meaningful rules is by associating to each claims problem a cooperative game and
using game theory to come out with a solution. To each bankruptcy problem one can associate a coalitional
game, with the claimants as players, and the corresponding characteristic function that assigns to any coalition
what is left from the initial endowment, if any, once the claims of the members of the complementary coalition
have been met. The division rules that correspond to a solution to coalitional games belong to the core of
the associated bankruptcy game. The core of a bankruptcy game is a non-empty convex polytope with a
particular structure: it is the intersection of a hyperrectangle with the efficiency hyperplane (Curiel et al.,
1987).

The center of gravity has proved very useful in the study of many systems. The core-center, the center
of gravity (centroid) of the core, was introduced and characterized for the general class of balanced games
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by González-Díaz and Sánchez-Rodríguez (2007, 2009) and was studied on the domain of airport games
by González-Díaz et al. (2015, 2016) and Mirás Calvo et al. (2016). The core-center rule assigns to each
bankruptcy problem the mathematical expectation of the uniform distribution over the core of the associated
bankruptcy game. Our goal is to show that it satisfies a good number of significant properties and that,
consequently, it may be an interesting addition to the inventory of division rules. From the general properties
of the core-center of an arbitrary balanced game we show that the core-center rule satisfies minimal rights first,
claims truncation invariance, equal treatment of equals, anonymity, homogeneity, and continuity. Analyzing
the core-center rule demands a detailed examination of the structure of the core of the associated bankruptcy
game. We prove that the core of a bankruptcy game is the translate by the vector of claims of the minus
core of the bankruptcy game associated with the dual bankruptcy problem. Therefore, the core-center rule
is self-dual. We also provide two different partitions of the core of a bankruptcy game as the union of two
pieces with negligible intersection that are, in turn, cores of bankruptcy games. These decompositions provide
geometrical interpretations of order preservation and claim monotonicity respectively, that allow us to show
that the core-center rule satisfies both properties.

One essential aspect in our analysis of the core of a bankruptcy game is to describe how it changes when
the endowment increases. When there are at least three claimants, the volume of the core of a bankruptcy
game, as a function of the endowment, is a differentiable function. Therefore, we can use differential calculus
to express some properties of the core-center rule in terms of the derivatives of the volume function. As a
result, we rely on an integral representation of the core-center rule to show that it is a differentiable function
of the endowment and that it satisfies endowment monotonicity, population monotonicity, other-regarding
claim monotonicity, and 1

|N | -truncated-claims lower bounds on awards. The core-center rule coincides with
the concede-and divide rule for two claimants but, for larger populations, it differs from the standard rules.
As a direct consequence of well known axiomatic characterizations of some of these rules we conclude that the
core-center rule violates composition up, composition down, and consistency. The integral formula for the
core-center rule admits an interpretation in terms of the reduced games introduced by Davis and Maschler
(1965). If a claimant leaves, the core-center rule selects, for each of the remaining claimants, the weighted
average of the choices made by the rule over all of the reduced problems where the claimant who leaves
receives an award between her minimal right and truncated claim. This property, that we call single-agent
weighted consistency, characterizes the core-center rule.

In Section 2 we introduce the basic definitions and notations. Section 3 explores the special structure of
the core of a bankruptcy game. We relate the core of a bankruptcy game and the cores of the reduced games.
We define the core-center rule and prove its basic properties in Section 4. We show that the core-center rule
satisfies endowment differentiability in Section 5 and provide an expression for it as the weighted average of
the choices made by the rule in each of the reduced problems. In Section 6 we see that the core-center rule
satisfies endowment monotonicity and, as a consequence, other monotonicity and lower bounds properties.
Finally, in Section 7 we discuss some issues concerning the computation of the core-center rule, its relation
to other bankruptcy rules, and an axiomatic characterization of this rule. We include an Appendix with the
computations and results that are just technical in nature. The results in the Appendix are grouped in five
parts: (A) the volume of the core of a bankruptcy game, (B) the computation of the core-center rule, (C)
decompositions of the core of a bankruptcy game, (D) integral representations of the core-center rule, and
(E) bounds for the core-center rule.

2 Preliminaries
LetN be the set of all finite subsets of the natural numbers N. A bankruptcy problem (O’Neill, 1982; Aumann
and Maschler, 1985) with set of claimants N ∈ N is a pair (E, d) where E ≥ 0 is the endowment to be divided
and d ∈ RN is the vector of claims satisfying di ≥ 0 for all i ∈ N and

∑
i∈N

di ≥ E. We denote the class of

bankruptcy problems with set of players N by BN . A bankruptcy rule is a function R : BN → RN assigning
to each bankruptcy problem (E, d) ∈ BN an awards vector R(E, d) ∈ RN such that 0 ≤ Ri(E, d) ≤ di for
every i ∈ N and

∑
i∈N
Ri(E, d) = E, that is, a way of associating with each bankruptcy problem a division

of the amount available between the claimants. The minimal right of claimant i ∈ N in (E, d) ∈ BN is the
quantity mi(E, d) = max

{
0, E −

∑
k 6=i

dk
}
, what is left of the endowment after all other claimants have been

fully compensated if possible, and 0 otherwise. The truncated claim of claimant i ∈ N in (E, d) ∈ BN is
ti(E, d) = min{E, di}, the minimun of the claim and the endowment. Let m(E, d) =

(
mi(E, d)

)
i∈N and
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t(E, d) =
(
ti(E, d)

)
i∈N .

Given x ∈ RN and N ′ ⊂ N let xN ′ =
(
xi
)
i∈N ′ ∈ RN ′ be the projection of x onto RN ′ . In par-

ticular denote x−i = xN\{i} ∈ RN\{i} the vector obtained by neglecting the ith-coordinate of x, i.e.,
x−i = (x1, . . . , xi−1, xi+1, . . . , xn). For simplicity, we will write x = (x−i, xi). Also, let x(N ′) =

∑
i∈N ′

xi.

Following Thomson (2019), we present some standard properties of rules. We say that a rule R satisfies:

• minimal rights first, if for each (E, d) ∈ BN we have R(E, d) = m(E, d) + R
(
E −

∑
i∈N

mi(E, d), d −

m(E, d)
)
.

• claims truncation invariance, if for each (E, d) ∈ BN we have R(E, d) = R(E, t(E, d)).

• 1
|N | -truncated-claims lower bounds on awards, if for each (E, d) ∈ BN we have R(E, d) ≥ 1

|N | t(E, d).

• 1
|N | -min-of-claim-and-deficit lower bounds on losses, if for each (E, d) ∈ BN we have d − R(E, d) ≥
1
|N | t

(
d(N)− E, d

)
.

• min-of-claim-and-equal-division lower bounds on awards, if for each (E, d) ∈ BN we have R(E, d) ≥
t
(
E
|N | , d

)
.

• equal treatment of equals, if for each (E, d) ∈ BN and each {i, j} ⊂ N , if di = dj we have Ri(E, d) =
Rj(E, d).

• anonymity, if for each (E, d) ∈ BN , each bijection f from N into itself, and each i ∈ N , we have
Ri(E, d) = Rf(i)

(
E, (df(i))i∈N

)
.

• order preservation, if for each (E, d) ∈ BN and each {i, j} ⊂ N , if di ≤ dj we have Ri(E, d) ≤ Rj(E, d)
and di −Ri(E, d) ≤ dj −Rj(E, d).

• claim monotonicity, if for each (E, d) ∈ BN , each i ∈ N , and each d′i ≥ di, we have Ri(E, (d−i, d′i)) ≥
Ri(E, d).

• linked claim-endowment monotonicity, if for each (E, d) ∈ BN , each i ∈ N and each δ > 0, we have
Ri
(
E + δ, (d−i, di + δ)

)
−Ri(E, d) ≤ δ.

• other-regarding claim monotonicity, if for each (E, d) ∈ BN , each i ∈ N , and each d′i ≥ di, we have
Rj(E, (d−i, d′i)) ≤ Rj(E, d) for all j ∈ N , j 6= i.

• endowment monotonicity, if for each (E, d) ∈ BN and each E′ ≥ 0, if d(N) ≥ E′ ≥ E we have
R(E′, d) ≥ R(E, d).

• homogeneity, if for each (E, d) ∈ BN and each λ > 0, we have R(λE, λd) = λR(E, d).

• composition down, if for each (E, d) ∈ BN and each E′ < E, we have R(E′, d) = R(E′,R(E, d)).

• composition up, if for each (E, d) ∈ BN and each E′ ≥ 0, if d(N) ≥ E′ > E we have R(E′, d) =
R(E, d) +R(E′ − E, d−R(E, d)).

• continuity, if for each sequence {(Eν , dν)} of elements of BN and each (E, d) ∈ BN , if {(Eν , dν)}
converges to (E, d) we have {R(Eν , dν)} converges to R(E, d).

• self-duality, if for each (E, d) ∈ BN we have R(E, d) = d−R
(
d(N)− E, d

)
.

Some of these properties are stronger requirements than others. For instance, min-of-claim-and-equal-
division lower bounds on awards implies 1

|N | -truncated-claims lower bounds on awards, and other-regarding
claim monotonicity implies claim monotonicity. Also, anonymity and order preservation are both stronger
than equal treatment of equals. Moreover, composition down and composition up are both stronger than
endowment monotonicity.

With each rule R we can associate a unique dual rule R∗, the one defined by the right-hand side of the
expression in the statement of the self-duality property: R∗(E, d) = d−R

(
d(N)−E, d

)
. A rule R is self-dual

if R = R∗. Two properties are dual if whenever a rule satisfies one of them then its dual satisfies the other.
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The following are pairs of dual properties: claims truncation invariance and minimal rights first; composition
down and composition up; and claim monotonicity and linked claim-endowment monotonicity.

We also consider situations in which the population of claimants involved may vary. In this case, a
bankruptcy problem is defined by first specifying N ∈ N , then a pair (E, d) ∈ BN . We still denote the class
of all problems with claimant set N by BN . So, a rule is a function defined on

⋃
N∈N

BN that associates with

each N ∈ N and each (E, d) ∈ BN an awards vector for (E, d). We say that a rule R satisfies:

• population monotonicity, if for each pair {N,N ′} ⊂ N such that N ′ ⊂ N , and each (E, d) ∈ BN we
have RN ′(E, d) ≤ R(E, dN ′).

• consistency, if for each pair {N,N ′} ⊂ N such that N ′ ⊂ N , and each (E, d) ∈ BN if x = R(E, d) we
have xN ′ = R

(
x(N ′), dN ′

)
. Bilateral consistency is the weaker property obtained by considering only

subgroups of two remaining agents, that is, when |N ′| = 2.

• average consistency, if for each N ⊂ N , each (E, d) ∈ BN , and each i ∈ N if x = R(E, d) we have
xi = 1

|N |−1

∑
j∈N\{i}

Ri(xi + xj , (di, dj)).

A coalitional game is an ordered pair (N, v) where N ∈ N is a finite set of players and v : 2N → R, the
characteristic function, satisfies v(∅) = 0. A subset S ∈ 2N of N is referred to as a coalition. In general,
v(S) represents the joint payoff that can be obtained by the members of coalition S if they cooperate. For
simplicity, we will write v(i) instead of v({i}) for i ∈ N . Let GN be the set of all coalitional games with
player set N . Given S ∈ 2N , let |S| be the number of players in S. The main focus within a cooperative
setting is on how to share among the players the amount v(N), the total joint payoff. Given a game v ∈ GN ,
an allocation x ∈ RN is said to be efficient if x(N) = v(N). The set of all efficient allocations for a game
v ∈ GN is the hyperplane H(v) = {x ∈ RN : x(N) = v(N)}. A solution is a mapping that associates with
each game v in some admissible class an efficient payoff vector.

The set of imputations of a game v ∈ GN is defined as I(v) =
{
x ∈ H(v) : xi ≥ v(i) for all i ∈ N

}
. The

core is the set C(v) =
{
x ∈ I(v) : x(S) ≥ v(S) for all S ∈ 2N

}
. The allocations that belong to the core are

called stable allocations. A game v ∈ GN is called balanced if its core is non-empty. A game v ∈ GN is
additive if v(S) =

∑
i∈S

v(i) for all S ∈ 2N , in which case C(v) = I(v) = {
(
v(i)

)
i∈N}. Thus, an additive game

v ∈ GN is characterized by the vector a =
(
v(i)

)
i∈N ∈ RN . To simplify the notation, we will usually identify

by the same letter both the vector and the additive game. A game v ∈ GN is zero-normalized if v(i) = 0
for each player i ∈ N . Given a game v ∈ GN the zero-normalization of v is the game v0 ∈ GN defined by
v0(S) = v(S) −

∑
i∈S

v(i), S ∈ 2N . Clearly, v = a + v0 where a =
(
v(i)

)
i∈N . In particular, if v ∈ GN is an

arbitrary balanced game then v0 is also balanced and C(v) = a+ C(v0).
When the core of a game is non-empty, if one considers that all of the core alternatives are equally

preferable then selecting the average stable payoff seems to be an intuitive and natural choice. Given a
balanced game v ∈ GN , González-Díaz and Sánchez-Rodríguez (2007) define the core-center µ(v) as the
mathematical expectation of the uniform distribution over the core of the game, i.e., the center of gravity
(centroid) of C(v). In general, given a convex polytope K ⊂ H(v) denote by Voln−1(K), or simply Vol(K)
if no confusion is possible, its (n − 1)-dimensional Lebesgue measure and by µ(K) its center of gravity. In
particular, µ(v) = µ(C(v)). Convexity of K ensures that µ(K) ∈ K. Also µ(a + K) = a + µ(K) for all
a ∈ RN . Therefore, if v ∈ GN is a balanced game, v0 ∈ GN is its zero-normalization, and a =

(
v({i})

)
i∈N

we have that µ(v) = a + µ(v0). We will make extensive use of the following property: if K = K1 ∪ K2,
Vol
(
K1 ∩K2

)
= 0, and ρ = Vol(K1)

Vol(K) , then µ(K) = ρµ(K1) + (1− ρ)µ(K2).
The bankruptcy game v ∈ GN associated with the bankruptcy problem (E, d) ∈ BN is defined by

v(S) = max
{

0, E − d(N\S)
}

for all S ∈ 2N . In general, given a bankruptcy problem (E, d) ∈ BN and
its associated bankruptcy game v ∈ GN we will use the notations H(E, d) = H(v), I(E, d) = I(v), and
C(E, d) = C(v). Bankruptcy games are balanced so C(E, d) 6= ∅ for all (E, d) ∈ BN . Let (E, d) ∈ BN be
a bankruptcy problem, v ∈ GN the associated bankruptcy game, and a =

(
v(i)

)
i∈N , then the bankruptcy

game v0 ∈ GN associated with the bankruptcy problem
(
E − a(N), d− a

)
∈ BN is the zero-normalization of

v.

4



(
E − v(2)− v(3), v(2), v(3)

) (
v(1), E − v(1)− v(3), v(3)

)

(
v(1), v(2), E − v(1)− v(2)

)

x
1

=
v
(1

)

x3 = v(3)

x
2

=
v
(2

)

C(v)

x
1 =
d
1

x
2

=
d 2

x3 = d3

µI

µ

Figure 1: The core of a 3-player bankruptcy game.

3 The core of a bankruptcy game
We devote this section to analyze in detail the core of the bankruptcy game associated with a bankruptcy
problem. Throughout the paper, we will assume, without loss of generality, that N = {1, . . . , n}.

Let (E, d) ∈ BN be a bankruptcy problem and v ∈ GN the associated bankruptcy game. First, note
that the minimal right of claimant i ∈ N is mi(E, d) = v(i) and the truncated claim of claimant i ∈ N is
ti(E, d) = v(N) − v(N\{i}). Bankruptcy games ara balanced, so C(E, d) is a non-empty convex polytope
contained in the efficiency hyperplane and therefore it has, at most, dimension n − 1. Moreover, the core
of a bankrutpcy game is heavily structured. Curiel et al. (1987) showed that it coincides with the Weber
set (Weber, 1988) and with the core-cover (Tijs and Lipperts, 1982). Dietzenbacher (2018) showed that it
coincides with the reasonable set (Gerard-Varet and Zamir, 1987). In fact, the core of a bankruptcy game
consists of all efficient allocations which are bounded from below by the minimal rights and bounded from
above by the truncated claims.

C(E, d) =
{
x ∈ H(E, d) : mi(E, d) ≤ xi ≤ ti(E, d) for all i ∈ N

}
.

With the help of a simple diagram, we will try to explain the intuition behind our analysis. Figure 1 shows
a sketch of the imputation set of a generic 3-claimant bankruptcy game and a core with the maximum number
of extreme points. We explore in the Appendix the structure of the imputation set of a bankruptcy game and
we show, see Lemma A.1, that if all the claims are bigger than the endowment then the core coincides with
the imputation set. If that is the case, the most notable game theoretical solutions agree to recommend the
egalitarian division among the claimants: the barycenter of the imputation triangle, µI = µ(I(E, d)). But,
if at least one individual claim is less than the endowment then we have imputations that are not stable.
Figure 1 depicts the imputation set and the core of a bankruptcy game when di < E for all i ∈ N and
dj + dk < E for all j 6= k. Then, the imputation set is the union of the core and three equilateral triangles.
Each imputation in the triangle at bottom left, U1, awards claimant 1 with at least d1. Let us assume that 2%
of the imputations generously reward the first claimant with at least her claim. Analogously, we can identify
the sets of imputations, U2 (bottom right triangle) and U3 (upper triangle), that reward the second and third
claimant with at least d2 and d3 respectively. Say that they represent 30% and 10% of the imputations, so that
the remaining 58% of the imputations are stable. The core-center rule recommends the unique core allocation
for which the initial egalitarian division is the weighted average of the egalitarian selections inside the regions
that benefit each claimant and the core-center selection. As this example illustrates, ratios of volumes like
Vol(C(E,d))
Vol(I(E,d)) , the percentage of imputations that are stable, play an special role when dealing with the core-
center rule, so we must put special emphasis on studying the volume of the core of a bankruptcy game. Let
d = (d1, . . . , dn) ∈ RN be a sorted vector of claims in ascending order, i.e., 0 < d1 ≤ · · · ≤ dn. We define
the volume function V (·, d) : [0, d(N)] → R that assigns to each E ∈ [0, d(N)] the volume of the core of the
bankruptcy game associated with the bankruptcy problem (E, d) ∈ BN , that is, V (E, d) = Voln−1(C(E, d)).
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x1 = v(N)− v({2, 3})

x1 = v(1)

Figure 2: The core of a bankruptcy game and the cores of some reduced problems v1
x.

In the Appendix, we carry out an extensive analysis of the function V (·, d). If |N | > 2, we show that V (·, d)
is differentiable and, by computing its derivative, we examine how the core of the bankruptcy game changes
with respect to variations on the endowment.

On the other hand, the region U1, for instance, is related to the situation that arises when the first
claimant leaves with her best award d1, which leads us to study the reduced games introduced by Davis and
Maschler (1965). Let v ∈ GN , i ∈ N , and x ∈ RN , the max reduced game vix ∈ GN\{i} is define as:

vix(S) =


0 if S = ∅
v(N)− xi if S = N\{i}
max{v(S ∪ {i})− xi, v(S)} otherwise

The player set of vix is obtained by removing player i from the original player set N . In the reduced game,
the players of N\{i} consider how to divide the total amount assigned to them by x assuming that player i
gets exactly xi. Then, the worth of N\{i} is x(N\{i}) = v(N)−xi. Funaki and Yamato (2001) showed that
the core satisfies a consistency property: if v ∈ GN , i ∈ N , and x ∈ C(v) then vix ∈ GN\{i} is a balanced
game and x−i ∈ C(vix). As a consequence, if we denote Ii = [v(i), v(N)− v(N\{i})] then

C(v) =
⋃
xi∈Ii

{xi} × C(vix).

This decomposition is illustrated in Figure 2, where each line inside the core of the bankruptcy game is
the core of a reduced problem v1

x for some x ∈ R3 such that v(1) ≤ x1 ≤ v(N) − v({2, 3}). Aumann and
Maschler (1985) showed that the max reduced bankruptcy game is the game corresponding to the “reduced
bankruptcy problem”. Let (E, d) ∈ BN be a bankruptcy problem, v ∈ GN the associated bankruptcy game,
i ∈ N , and x ∈ C(E, d). Then vix ∈ GN\{i} is the bankruptcy game associated to the bankruptcy problem
(E − xi, d−i) ∈ BN\{i}. The following result is then straightforward.

Proposition 3.1. Let (E, d) ∈ BN be a bankruptcy problem, i ∈ N , and Ii = [mi(E, d), ti(E, d)]. Then

C(E, d) =
⋃
xi∈Ii

{xi} × C
(
E − xi, d−i

)
.

Given a bankruptcy problem (E, d) ∈ BN consider the, so called, dual problem (d(N)− E, d) ∈ BN and
let v∗ ∈ GN be the associated bankruptcy game. It turns out that the core of a bankruptcy game is self-dual:
the core of v is the translate of the minus core of v∗ by the vector of claims d.

Proposition 3.2. Let (E, d) ∈ BN be a bankruptcy problem. Then C(E, d) = d− C
(
d(N)− E, d

)
.

Proof. Let v ∈ GN and v∗ ∈ GN be the games associated with the problems (E, d) ∈ BN and (d(N)−E, d) ∈
BN respectively. Then,

C
(
d(N)− E, d

)
=
{
y ∈ RN : y(N) = d(N)− E, v∗(i) ≤ yi ≤ min

{
d(N)− E, di

}
for all i ∈ N

}
.
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Observe that v∗(i) = max{0, di − E}, di − min{d(N) − E, di} = v(i) and di − v∗(i) = min{E, di} for all
i ∈ N . Therefore, for each i ∈ N , we have that v(i) ≤ xi ≤ min{E, di} if and only if v∗(i) ≤ di − xi ≤
min{d(N)− E, di}. Now, the result is straightforward.

Since the core is self-dual the graph of the volume function V (·, d) is symmetric with respect to the axis
E = 1

2d(N) determined by the half sum of the claims (see Figure 9).

4 Basic properties of the core-center rule
One way of defining meaningful rules is by applying game theoretical solutions to the bankruptcy game.
Consider the function µ : BN → RN that assigns to each bankruptcy problem (E, d) ∈ BN the core-center of
its associated bankruptcy game v ∈ GN , that is, µ(E, d) = µ(v) = µ(C(v)) ∈ C(v). So, following the game
theoretical approach, we provide a new and intuitive rule for bankruptcy problems: the core-center rule. We
aimed to show that the core-center rule is a well behaved rule, that is, it satisfies a good number of properties.
In this section, we study a set of the basic properties that most of the standard bankruptcy rules satisfy.

Proposition 4.1. The core-center µ : BN → RN is a rule that satisfies minimal rights first, equal treatment
of equals, anonymity, homogeneity, continuity, self-duality, and claims truncation invariance.

Proof. Let (E, d) ∈ BN be a bankruptcy problem and v ∈ GN the associated bankruptcy game. We know
that if v0 ∈ GN is the zero-normalization of v then µ(v) = a + µ(v0), where a =

(
v({i})

)
i∈N . Therefore, µ

satisfies minimal rights first. González-Díaz and Sánchez-Rodríguez (2007) showed that the core-center, as a
solution defined in the class of balanced games, treats symmetric players equally and that it is a homogeneous
and continuous function of the values of the characteristic function. In the context of bankruptcy problems,
equal treatment of equals and anonymity hold because agents with the same claims are symmetric players in
the associated bankruptcy game. Since, given λ > 0 and S ∈ 2N , vλ(S) = λv(S), where vλ is the bankruptcy
game associated with (λE, λd) ∈ BN , the core-center rule satisfies homogeneity. The values, v(S), S ∈ 2N ,
of the characteristic function are continuous with respect to the endowment E and the claims d. Then,
the core-center rule satisfies continuity because it is a composition of continuous functions. Self-duality is a
consequence of Proposition 3.2. Claims truncation invariance and minimal rights first are dual properties.
Since the core-center rule is self-dual and satisfies minimal rights first then it satisfies claims truncation
invariance.

Suppose that there are only two claimants, so let N = {1, 2} and d = (d1, d2) ∈ RN , with 0 ≤ d1 ≤ d2.
Then, C(E, d) = I(E, d) is the line segment with endpoints (v(1), E − v(1)) and (E − v(2), v(2)), where
v(1) = max{0, E − d2} and v(2) = max{0, E − d1} (see Figure 3). The core-center rule is the middle point
of this segment,

µ(E, d) =


(
E
2 ,

E
2

)
if 0 ≤ E ≤ d1(

d1
2 , E −

d1
2

)
if d1 ≤ E ≤ d2(

E+d1−d2
2 , E−d1+d2

2

)
if d2 ≤ E ≤ d1 + d2

. (1)

Therefore, the core-center rule satisfies the contested garment principle (Aumann and Maschler, 1985) or
concede-and-divide principle. That means that the core-center rule coincides with the Talmud rule (Aumann
and Maschler, 1985) and the random arrival rule (O’Neill, 1982) for bankruptcy problems with two claimants.
Since concede-and-divide violates composition down so does the core-center rule.

v(1)

v(2)

E − v(2)

E − v(1)

C(E, d)

Figure 3: The core of a bankruptcy game with two claimants.

Let us illustrate with a simple example that the core-center rule differs from the standard bankruptcy
rules. It also manifests that the core-center rule fails min-of-claim-and-equal-division lower bounds on awards.
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Example 4.2. Let N = {1, 2, 3} and consider the bankruptcy problem (E, d) ∈ BN with E = 3 and d =
(1, 2, 2). The next table displays the awards assigned to this particular problem by the core-center rule (µ), the
proporcional rule (PRO), the constrained equal awards rule (CEA), the constrained equal losses rule (CEL),
the Talmud rule (T), and the random arrival rule (RA). The computation of the core-center rule is detailed
in Example B.3.

CEA CEL PRO T RA µ

(1, 1, 1) ( 1
3 ,

4
3 ,

4
3 ) ( 3

5 ,
6
5 ,

6
5 ) ( 1

2 ,
5
4 ,

5
4 ) ( 2

3 ,
7
6 ,

7
6 ) ( 5

9 ,
11
9 ,

11
9 )

Observe that t
(
E
3 , d

)
= (1, 1, 1) and µ1(E, d) < 1, so the core-center rule violates min-of-claim-and-equal-

division lower bounds on awards.

Dagan (1996) shows that the constrained equal awards rule is the only rule satisfying equal treatment
of equals, claims truncation invariance and composition up. Then, the core-center rule does not satisfy
composition up. Composition down and composition up are dual properties. Then the core-center rule
violates composition down. Moreno Ternero and Villar (2004) prove that the Talmud rule is the only rule
satisfying claims truncation invariance, self-duality an bilateral consistency. Then the core-center rule fails
consistency.

Since the core-center rule satisfies anonymity, in what follows we will assume that given a bankruptcy
problem (E, d) ∈ BN , the vector of claims d = (d1, . . . , dn) ∈ RN is sorted in ascending order, i.e., d1 ≤ · · · ≤
dn.

Suppose that, given a bankruptcy problem (E, d) ∈ BN , the core of the bankruptcy game C(E, d) can
be decomposed as the union of two pieces, C1 and C2, with negligible intersection, i.e., C(E, d) = C1 ∪ C2

and Vol(C1 ∩ C2) = 0. In some instances, C1 and C2 are the cores, possibly translated by a specific vector,
of some particular bankruptcy games obtained from (E, d). Whenever this is the case, if p = Vol(C1)

V (E,d) is

the percentage of stable allocations that belong to C1, then 1 − p = Vol(C2)
V (E,d) is the percentage of stable

allocations that belong to C2, and the core-center rule µ(E, d) is the weighted average of the core-centers
of the pieces, µ(E, d) = pµ(C1) + (1 − p)µ(C2). In the Appendix we present two such decompositions that
provide a geometrical interpretation in terms of the core of the bankruptcy game of order preservation and
claim monotonicity respectively.

Order preservation is, in fact, the conjunction of two dual properties: order preservation in awards and
order preservation in losses. First we show that the awards recommended by the core-center rule are ordered
as claims are.

Proposition 4.3. Let (E, d) ∈ BN and i ∈ N\{n}. If di ≤ di+1 then µi(E, d) ≤ µi+1(E, d).

Proof. Since the core-center rule satisfies equal treatment of equals we assume that di < di+1. If di ≥ E
then, by Proposition B.1, µi(E, d) = µi+1(E, d). Let di < E. If m(E, d) = 0, we can apply Proposition C.1.
Denote ei ∈ RN the vector with 1 in the ith-coordinate and 0’s elsewhere. Let a = (d−(i+1), di), b = die

i+1,
c = d − b, and ρ = V (E,a)

V (E,d) . Since µ satisfies equal treatment of equals, µi+1(E, a) = µi(E, a). Moreover,
µi+1

(
b+ C(E − di, c)

)
= di + µi+1(C(E − di, c)) ≥ di ≥ µi(C(E − di, c)) = µi

(
b+ C(E − di, c)

)
. Then,

µi+1(E, d) = ρµi+1(C(E, a)) + (1− ρ)µi+1

(
b+ C(E − di, c)

)
≥ ρµi(E, a) + (1− ρ)µi(E − di, c) = µi(E, d).

In general, if v ∈ GN is the bankruptcy game associated with (E, d) ∈ BN , we know that v = m(E, d) + v0 =(
v(i)

)
i∈N + v0 where v0 ∈ GN is the zero-normalization of v. Then, since v(i) ≤ v(i + 1), we have that

µi+1(E, d) = v(i+ 1) + µi+1(v0) ≥ v(i) + µi(v0) = µi(E, d).

Order preservation in awards and order preservation in losses are dual properties. So, the losses implied
by the core-center rule are also ordered as claims are.

Proposition 4.4. The core-center rule satisfies order preservation.

Next, we show that the core-center rule satisfies claim monotonicity, that is, if some agent’s claim increases
then her award should not decrease. The dual property of claim monotonicity is linked claim-endowment
monotonicity that states that if an agent’s claim and the endowment increase by equal amounts (their changes
are linked) then this claimant’s award should increase by at most this amount.

Proposition 4.5. The core-center rule satisfies claim monotonicity and linked claim-endowment monotonic-
ity.
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Proof. Let (E, d) ∈ BN be a bankruptcy problem, v ∈ GN the associated bankruptcy game and i ∈ N\{n}.
Let di ≤ d′i ≤ di+1. If di ≥ E then C(E, d′) = C(E, d) and µi(E, d

′) = µi(E, d). Assume that di < E
so that Proposition C.2 holds. Let ei ∈ RN be the vector with 1 in the ith-coordinate and 0’s elsewhere,
d′ = (d−i, d

′
i), b = die

i, c = d′ − b, and ρ = V (E,d)
V (E,d′) . Clearly, µi(E, d) ≤ di + µi(E − di, c). Then,

µi(E, d
′) = ρµi(E, d) + (1 − ρ)

(
di + µi(E − di, c)

)
≥ µi(E, d). The core-center rule also satisfies linked

claim-endowment monotonicity, since this property and claim monotonicity are dual properties.

5 Consistency and endowment differentiability
Recall that a ruleR satisfies consistency if for each pair {N,N ′} ⊂ N such thatN ′ ⊂ N , and each (E, d) ∈ BN
if x = R(E, d) then xN ′ = R

(
x(N ′), dN ′

)
. Consider a bankruptcy problem and apply a rule to it. Imagine

that some claimants leave with their awards. The remaining claimants, the members of N ′, faced the
reduced problem relative to the subgroup and the initial recommendation: their claims are unchanged and
the endowment is the difference between the amount initially available and the sum of the awards to the
agents who left, x(N ′) = E − x(N\N ′). The rule is consistent if it awards to each of the claimants in N ′

the same amount as it did initially. Aumann and Maschler (1985) showed that the Talmud rule is the only
rule to agree with concede-and-divide for two claimants and to be bilaterally consistent. Then, as we have
already seen, the core-center rule is not consistent. Naturally, weaker consistency requirements have been
proposed in the literature that allow us to extend a two-claimant rule to arbitrary populations, for instance,
average consistency. Dagan and Volij (1997) show that if the initial two-claimant rule happens to have a
consistent extension, then the consistent-on-average rule is precisely this consistent extension. Therefore,
the core-center rule does not satisfy average consistency. Here, we prove that the core-center rule satisfies a
consistency-type property: the awards chosen by the core-center rule for a problem are the weighted average
of the choices made by the rule in each of the reduced problems that result when a claimant receives any
award in the core of the bankruptcy game and leaves.

If claimant i ∈ N gets the minimum right mi(E, d) then the remainder Ri(E, d) = E − mi(E, d) =
min{E, d(N\{i})} = v(N) − v(i) is the maximum award that the other claimants, the members of N\{i},
together can get. Analogously, if claimant i ∈ N gets the truncated claim ti(E, d) then the remainder
ri(E, d) = E− ti(E, d) = max{0, E−di} = v(N\{i}) is the minimum award that the other claimants can get.
Now, assume that agent i receives an award xi such that mi(E, d) ≤ xi ≤ ti(E, d) and leaves. The remaining
agents face the reduced problem (u, d−i) ∈ BN\{i} where u = E − xi and ri(E, d) ≤ u ≤ Ri(E, d). But, see
Proposition 3.1, the core C(u, d−i) is a cross section of the core of the initial problem C(E, d). Naturally,
this cross section might be “bigger” or “smaller” depending on the value of u. Therefore, the relative measure
of stable allocations available to the remaining agents, V (u,d−i)

V (E,d) , varies with u. For each i ∈ N consider the
function gi : (0, d(N))× [0, d(N\{i})] −→ R defined as:

gi(E, u) =

√
n√

n− 1

V (u, d−i)

V (E, d)
, for all (E, u) ∈ (0, d(N))× [0, d(N\{i})].

Clearly, gi(E, u) ≥ 0 for all (E, u) ∈ (0, d(N))× [0, d(N\{i})]. Therefore, g(E, ·) is a weight function for all
E ∈ (0, d(N)) that, as we prove next, is a probability density function on the interval [ri(E, d), Ri(E, d)]. The
core-center rule selects for each claimant in N\{i} the weighted average of the choices made by the rule over
all of the reduced problems where agent i receives and award between her minimal right and her truncated
claim and leaves.

Theorem 5.1. Assume that |N | ≥ 3. If (E, d) ∈ BN and i ∈ N then
∫ Ri(E,d)

ri(E,d)

gi(E, u)du = 1. Moreover,

µj(E, d) =

∫ Ri(E,d)

ri(E,d)

µj(u, d−i)gi(E, u)du for all j ∈ N\{i}.

Proof. The result follows from Theorem D.1 in the Appendix by applying the change of variable u = E−s.

The property stated in Theorem 5.1 implicitly defines a mechanism to extend the concede-and-divide
rule to an arbitrary population of claimants: take the weighted average of the amounts awarded by the rule
in the reduced problems obtained when a single-claimant leaves. We say that a rule satisfies single-agent
weighted consistency if for each pair of claimants {i, j} ⊂ N , claimant j’s award is a weighted average of the
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recommendations made by the rule in all the reduced problems with respect to {i} and any vector x in the
core of the bankruptcy game.

• A rule R satisfies single-agent weighted consistency if, for each (E, d) ∈ BN and each i ∈ N , there exists
a weight function wi(E, ·), for all E ∈ (0, d(N)), such that, for each j ∈ N\{i} we have

Rj(E, d) =

∫ Ri(E,d)

ri(E,d)

Rj(u, d−i)wi(E, u)du.

where ri(E, d) = E − ti(E, d) and Ri(E, d) = E −mi(E, d).

As a corollary of Theorem 5.1 we have that the core-center rule satisfies single-agent weighted consistency
when |N | ≥ 3. In fact, the weight functions are given by the relative measure of stable allocations that belong
to the core of the reduced games. These weight functions are the marginal density functions of the uniform
distribution over the core. Therefore, the following characterization holds.

Corollary 5.2. The core-center rule is the only rule to agree with concede-and-divide for two claimants and
to satisfy single-agent weighted consistency.

Naturally, a way to define meaningful weight functions is to consider different probability distributions
over the core of the game that could lead to extensions of two claimant rules. In the present formulation, the
single-agent weighted consistency property is a strong requirement, but it opens the door to explore weaker
forms. A discrete version, when considering finite probability distribution over the core, could be related
with the average consistency property.

µ1

Ed1 d2 d1 + d2
0

d1
2

d1

µ2

Ed1 d2 d1 + d2
0

d1
2

d2 − d1
2

d2

Figure 4: Awards chosen by the concede-and-divide rule as a function of E.

Given a rule R and a vector of claims d ∈ RN , the path followed by the awards vector chosen by R
as the endowment increases from 0 to d(N), that is, the function R(·, d) : [0, d(N)] → RN , is called the
path of awards of the rule for the claims vector. A rule R satisfies endowment continuity if the path of
awards of the rule is continuous for all claims vector. Endowment continuity is a weaker property than
continuity. Certainly, the core-center rule, being continuous, satisfies endowment continuity. A stronger
property, endowment differentiability, is to require the paths of awards to be differentiable. As Figure 4
illustrates, for bankruptcy problems with two claimants, the concede-and-divide rule, and therefore the core-
center rule, violates endowment differentiability. Nevertheless, as a first implication of Theorem 5.1, we prove
in the Appendix, see Theorem D.2, that the core-center rule is endowment differentiable for problems with
more than two claimants.

Proposition 5.3. If |N | ≥ 3 then the core-center rule satisfies endowment differentiability.

The differentiability of the path of awards of the core-center rule is illustrated in Figure 5 and Figure 6.
Among the standard bankruptcy rules, and for an arbitrary set of claimants N , the proportional rule satisfies
endowment differentiability but the constraint equal awards rule, the constraint equal losses rule, the Talmud
rule, and the random arrival rule violate it.
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6 Endowment monotonicity and related properties
Endowment monotonicity states that when there is more to be divided then nobody should lose. An endow-
ment continuous rule R satisfies endowment monotonicity if and only if Ri(E, d), the award chosen by the
rule for claimant i as a function of the endowment, is monotonically increasing on [0, d(N)] for all claims
vector d. The concede-and-divide rule, whose awards for each claimant are the continuous piecewise linear
functions depicted in Figure 4, satisfies endowment monotonicity.

Assume that |N | ≥ 3 and that d = (d1, . . . , dn) ∈ RN with 0 ≤ d1 ≤ · · · ≤ dn. Since the core-center rule
is endowment differentiable whenever |N | ≥ 3, in order to prove that it satisfies endowment monotonicity we
have to show that ∂µj

∂E (E, d) ≥ 0 for all E ∈ [0, d(N)] and for all j ∈ N . The derivatives ∂µj

∂E , j ∈ N , are
computed in Theorem D.2 in the Appendix.

Theorem 6.1. The core-center rule satisfies endowment monotonicity. Moreover, if (E, d) ∈ BN is a
bankruptcy problem then µ(ri(E, d), d−i) ≤ µN\{i}(E, d) ≤ µ(Ri(E, d), d−i) for all i ∈ N .

Proof. Let d = (d1, . . . , dn) ∈ RN such that 0 < d1 ≤ · · · ≤ dn. We proceed by induction on the number of
claimants. We already know, that if |N | = 2 then µj(·, d) is monotonically increasing for all j ∈ N . Now,
let |N | ≥ 3, i ∈ N , and assume that µj(·, d−i) is monotonically increasing for all j ∈ N\{i}. According to
Theorem D.2 it suffices to prove that µj(·, d) is monotonically increasing on

[
0,min

{
1
2d(N), d(N\{n})

}]
for

all j ∈ N or, equivalently, that ∂µj

∂E (E, d) ≥ 0 for all E ∈ [0,min
{

1
2d(N), d(N\{n})

}]
and all j ∈ N . By the

induction hypothesis, µj(ri(E, d), d−i) ≤ µj(u, d−i) ≤ µj(Ri(E, d), d−i) for all u ∈ [ri(E, d), Ri(E, d)] and all
j ∈ N\{i}. Therefore,∫ Ri(E,d)

ri(E,d)

µj(ri(E, d), d−i)gi(E, u)du ≤
∫ Ri(E,d)

ri(E,d)

µj(u, d−i)gi(E, u)du ≤
∫ Ri(E,d)

ri(E,d)

µj(Ri(E, d), d−i)gi(E, u)du

or, equivalently, from Theorem D.1, µj(ri(E, d), d−i) ≤ µj(E, d) ≤ µj(Ri(E, d), d−i). From these inequal-
ities and the expressions obtained in Theorem D.2 it follows that if E ∈

[
d1,min

{
1
2d(N), d(N\{n})

}]
then ∂µn

∂E (E, d) = g1(E,E)
(
µn(E, d−1) − µn(E, d)

)
+ g1(E,E − d1)

(
µn(E, d) − µn(E − d1, d−1)

)
≥ 0 and

∂µj

∂E (E, d) = gn(E,E)
(
µj(E, d−n) − µj(E, d)

)
+ χn(E, d)gn(E,E − dn)

(
µj(E, d) − µj(E − dn, d−n)

)
≥ 0 for

all j ∈ N\{n}.

Observe that Theorem 6.1 provides some important bounds that relate the core-center rule of a bankruptcy
problem with the core-center rule of the reduced problems obtained when an agent leaves with her best and
worst awards.

Corollary 6.2. Let (E, d) ∈ BN be a bankruptcy problem and i ∈ N . If di < E ≤ d(N\{i}) then µ(E −
di, d−i) ≤ µN\{i}(E, d) ≤ µ(E, d−i).

Example 6.3. Let N = {1, 2, 3} and d = (2, 4, 5) ∈ RN so that d(N) = 11 and d3 = 5 ≤ 1
2d(N) = 5.5 ≤

d(N\{3}) = 6. Clearly r3(E, d) =

{
0 if E ≤ 5

E − 5 if E > 5
and R3(E, d) =

{
E if E ≤ 6

6 if E > 6
. Therefore,

µ1(r3(E, d), d−3) =


0 if E ≤ 5
E−5

2 if 5 < E ≤ 7

1 if 7 < E ≤ 9
E−7

2 if 9 < E ≤ 11

µ1(R3(E, d), d−3) =


E
2 if E ≤ 2

1 if 2 < E ≤ 4
E−2

2 if 4 < E ≤ 6

2 if 6 < E ≤ 11

The graphs of the coordinates µj(·, d), j = 1, 2, 3, are depicted in Figure 5. We can see that they are
monotonically increasing and that µ1(E, d) ≤ µ2(E, d) ≤ µ3(E, d) for all E ∈ [0, 11]. Also, the self-duality
property corresponds with the special symmetry of the graphs with respect to E = 5.5. In Figure 5 right, we
observe graphically that µ1(r3(E, d), d−3) ≤ µ1(E, d) ≤ µ1(R3(E, d), d−3) for all E ∈ [0, 11].

Once endowment monotonicity of the core-center rule has been established we can address population
monotonicity, other-regarding claim monotonicity and 1

|N | -truncated-claims lower bounds on awards. Pop-
ulation monotonicity states that if the population of claimants enlarges but the amount to divide stays the
same, each of the claimants initially present should receive at most as much as she did initially.
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µj

E2 4 5 6 7 9 11

2

4

5
µ3

µ2

µ1

0

µ1

E2 4 5 6 7 9 11

1

2

µ1(E, d)
µ1(R3, d−3)

µ1(r3, d−3)

0

Figure 5: The core-center rule as a function of the endowment when d = (2, 4, 5).

Proposition 6.4. The core-center rule satisfies population monotonicity.

Proof. Let {N,N ′} ⊂ N such that N ′ ⊂ N . We have to prove that µN ′(E, d) ≤ µ(E, dN ′). First, let
N ′ = N\{i} for some i ∈ N . Then, according to Corollary 6.2 and since µ satisfies endowment monotonicity,
µN ′(E, d) ≤ µ(Ri(E, d), d−i) ≤ µ(E, d−i). The general case follows applying repeatedly this result.

We know, see Proposition 4.5, that the core-center rule satisfies claim monotonicity, The property of
other-regarding claim monotonicity considers the impact that an increase in some agent’s claim has on the
others. It requires that none of these claimants’ awards should increase.

Proposition 6.5. The core-center rule satisfies other-regarding claim monotonicity.

Proof. Let (E, d) ∈ BN be a bankruptcy problem such that 0 ≤ d1 ≤ · · · ≤ dn, i ∈ N , and di+1 ≥ d′i ≥ di.
Denote d′ = (d−i, d

′
i) ∈ RN . If E ≤ di then C(E, d) = C(E, d′) and µ(E, d) = µ(E, d′). Assume that di < E.

Let b = die
i, c = d′−b, p = Vol(E,d)

Vol(E,d′) , and j ∈ N\{i}. Then, from Proposition C.2, µj(E, d′) = pµj(E, d)+(1−
p)µj(E−di, c). But, by Proposition 6.4 and Corollary 6.2, we have µj(E−di, c) ≤ µj(E−di, d−i) ≤ µj(E, d).
Therefore, µj(E, d′) = pµj(E, d) + (1− p)µj(E − di, c) ≤ pµj(E, d) + (1− p)µj(E, d) = µj(E, d).

Trivially, if a rule R satisfies other-regarding claim monotonicity then it satisfies claim monotonicity.
So, from Proposition 6.5 we have that the core-center rule satisfies this property. Nevertheless, we choose
to give an alternative proof of this fact in Proposition 4.5, by means of a decomposition of the core, that
analyzes the modifications of the core structure implied by a change of one single claim. Note, also, that claim
monotonicity can be establish by showing that ∂µi

∂di
≥ 0 for all i ∈ N . These derivatives can be computed

using Lasserre’s result (see Theorem A.3).
Our next goal is to show that the core-center rule satisfies 1

|N | -truncated-claims lower bounds on awards,
that is, the core-center rule guarantees a minimal share to every agent equal to one nth her claim truncated
at the amount to be divided. The core-center rule also satisfies 1

|N | -min-of-claim-and-deficit lower bounds on
losses, since this property and 1

|N | -truncated-claims lower bounds on awards are dual properties.

Proposition 6.6. The core-center rule satisfies 1
|N | -truncated-claims lower bounds on awards and 1

|N | -min-
of-claim-and-deficit lower bounds on losses.

Proof. Let (E, d) ∈ BN be a bankruptcy problem such that 0 ≤ d1 ≤ · · · ≤ dn. If E ∈ [0, d1] then, according
to Proposition B.1, µj(E, d) = E

n = 1
n min{E, dj} for all j ∈ N . If E ∈ [d1, d2] then by Lemma E.1, µj(E, d) ≥

1
n min{E, dj} for all j ∈ N . Now, by repeatedly applying Lemma E.2 it is easy to see that µj(E, d) ≥
1
n min{E, dj} for all j ∈ N whenever E ∈ [d2, dn]. But if E ≥ dn and j ∈ N\{n} then, by other-regarding
claim monotonicity, µj(E, d) ≥ µj(E, (d1, . . . , dn−1, E)), and we already know that µj(E, (d1, . . . , dn−1, E)) ≥
1
n min{E, dj}. Lastly, it is clear that µn(E, d) ≥ E

n ≥
dn
n = 1

n min{E, dn}.

Example 6.7. Let N = {1, 2, 3} and consider the vector of claims d = (1, 3, 5) ∈ RN . In this case d(N) = 9
and d(N\{3}) = 4 ≤ 1

2d(N) = 4.5 ≤ d3 = 5. Therefore if E ∈ [4, 5] then µ1(E, d) = d1
2 = 1

2 , µ2(E, d) = d2
2 =

3
2 and µ3(E, d) = E − 2. The graphs of the coordinates µj(·, d), j = 1, 2, 3, are depicted in Figure 6. As in
Example 6.3, we can see that they are monotonically increasing and the symmetry with respect to E = 4.5
implied by the self-duality property. Observe also that µ1(E, d) ≤ µ2(E, d) for all E ∈ [0, 9]. In Figure 6
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µj
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2

1
2

1

3
2

2

3
µ2(E, d)

µ1(E, d)

0

µj

E1 3 4 5 6 8 99
2

2

3

5

5
3

µ3(E, d)

0

Figure 6: The coordinates of the core-center rule as functions of the endowment when d = (1, 3, 5).

right, we compare µ3(·, d) with the corresponding piecewise linear function given by the 1
|N | -truncated-claims

lower bounds on awards, in fact, µ3(E, d) ≥ E
3 for all E ∈ [0, 9].

7 Concluding remarks
Following a game-theoretic approach, we have thoroughly studied the behavior of the core-center rule for
the bankruptcy problem. The definition of the core-center rule is very intuitive, it is the average of all the
award vectors that are bounded from below by the minimal rights and bounded from above by the truncated
claims. There are several algorithms to compute (or estimate) the core-center of an arbitrary balanced game.
For bankruptcy games, in Section 3 we have sketched a procedure to exactly calculate the core-center rule
when there are only three claimants. Mirás Calvo et al. (2020a) extend the idea to an arbitrary population:
the imputation set of a given bankruptcy game can be partitioned through cores of particular bankruptcy
games. This decomposition provides a backwards recurrence algorithm to compute the core-center rule.

The continuity property guarantees that small changes in the claims vector or in the endowment lead to
small changes in the recommendation made by the rule. Loosely speaking, a variation, no matter how small,
in the initial endowment produces a change in the core of the associated bankruptcy game. The core-center
rule is highly sensitive to such changes. In fact, we have proved that the core-center rule, for problems with
at least three claimants, not only varies with continuity with respect to the endowment but also that the
rate at which the rule changes varies also with continuity. Among the standard bankruptcy rules only the
proportional rule is endowment differentiable.

The Lorenz order is the main criterion to rank rules. In order to compare a pair of awards vectors with the
Lorenz ordering, first one has to rearrange the coordinates of each vector in a non-decreasing order. Then,
we say that the former Lorenz-dominates the latter if all the cumulative sums of the rearranged coordinates
are greater with the first vector than with the second. Certainly, the enumeration of properties satisfied by
the core-center rule given in this paper is not exhaustive. Mirás Calvo et al. (2020b) add several properties
to the list and use them to compare, using the Lorenz criterion, the core-center rule and the nine central
bankruptcy rules considered by Bosmas and Lauwers (2011).

Some division rules that correspond to a solution to coalitional games can be characterized as the solution
of an optimization problem. For instance, the Talmud rule corresponds to the nucleolus. Therefore, the
Talmud rule minimizes, according to the lexicographical order, the vector of dissatisfactions, once decreasingly
ordered its components, among all efficient payoff vectors, that is, minimizes the maximal complaint that a
coalition might raise against a proposed division. Many important values for coalitional games are known to
arise from least square optimization problems. Hokari (2000) shows that the constrained equal awards rule,
that corresponds to the Dutta-Ray solution, is the one at which the variance of the amounts received by all
of the claimants is minimized, that is,

CEA(E, d) = arg min
x∈C(E,d)

|N |∑
i=1

(
xi − E

|N |
)2
.

Given a bankruptcy problem (E, d) ∈ BN , the random arrival rule, i.e. the Shapley value of the corresponding
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bankruptcy game v ∈ GN , is the least square value (see Ruíz et al. (1998)), given by

RA(E, d) = arg min
x∈H(E,d)

∑
S(N

α(S)
(
v(S)− x(S)

)2
,

where α(S) = (|S| − 1)!(|N | − |S| − 1)! for S ( N .
Now, if a rule R recommends an award ai to claimant i, then, for each x ∈ C(E, d), the value (xi−ai)2 is

the square deviation of xi with respect to that claimant’s award. So,
∫
C(E,d)

(xi−ai)2dm is the sum (integral)

over all stable allocations of the square deviations with respect to ai. It follows from the definition of the
core-center rule as the mean value of the uniform distribution over the core of the associated bankruptcy
game, that the core-center rule is the one that, for each claimant, minimizes the integral over all stable
allocations of the square deviations. Therefore,

µi(E, d) = arg min
ai∈Ii

∫
C(E,d)

(xi − ai)2dm,

where Ii = [mi(E, d), ti(E, d)] for all i ∈ N .
We introduced a property called single-agent average consistency that help us characterized the core-center

rule. Another axiomatic characterization could be worked out from the already mentioned decomposition of
the imputation set of a given bankruptcy game by cores of particular bankruptcy games. In fact, González-
Díaz and Sánchez-Rodríguez (2009) introduced a requirement, called the trade-off property, to characterize
the core-center in the general class of balanced games. The basic idea of the characterization is to decompose
the original core in pieces that are “simple” cores of games. The solution in these “simple” cores is described
by standard axioms (efficiency and symmetry properties). Then, the trade-off property is used to obtain
the core-center as the weighted sum of the solution applied to the “simple” cores of the decomposition. The
downside when considering bankruptcy problems is that the pieces of the core dissection are not cores of
bankruptcy games themselves but translates of cores of bankruptcy games. Therefore, one needs to enlarge
the class of problems.

An interesting topic is to implement cooperative solutions through non-cooperative procedures. In that
respect, Tsay and Yeh (2019) provide strategic implementations of the constrained equal awards rule, the
constrained equal losses rule, the proportional rule, and the Talmud rule. An open question for future research
is to find a strategic procedure of the core-center rule.
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Appendix

A The volume of the core of a bankruptcy game
Let v ∈ GN . The imputation set I(v) is nonempty if and only if ∆ = v(N)−

∑
k∈N

v(k) ≥ 0. In that case, I(v) is

the regular simplex, contained in the hyperplane H(v) ⊂ RN , spanned by the points ai = (ai1, . . . , a
i
n) ∈ RN ,

i ∈ N , where aij =

v(j) if j ∈ N\{i}
v(N)−

∑
k 6=i

v(k) if j = i . Then
√

2∆ is the common edge length. The center of

gravity of I(v) is the arithmetic mean of its extreme points, µ(I(v)) =
n∑
i=1

ai

n , so µi(I(v)) = v(i) + ∆
n for all

i ∈ N . The (n− 1)-volume of I(v) is Vol(I(v)) =
√
n

(n−1)!∆
n−1 (see, for instance, Gritzman and Klee (1994)).

It is a well known fact that if (E, d) ∈ BN is a bankruptcy problem and v ∈ GN is the associated
bankruptcy game then v is a convex game. Therefore, E = v(N) ≥

∑
k∈N

v(k), so I(E, d) 6= ∅. Let d =

(d1, . . . , dn) ∈ RN be a sorted vector of claims in ascending order, i.e., 0 < d1 ≤ · · · ≤ dn. Clearly (E, d) ∈
BN for each E ∈ [0, d(N)] so we can define the volume function V (·, d) : [0, d(N)] → R as V (E, d) =
Voln−1(C(E, d)). Our aim is to thoroughly analyze the volume function.

For a bankruptcy problem (E, d) ∈ BN with two claimants, N = {1, 2}, and d = (d1, d2) ∈ RN such that
0 ≤ d1 ≤ d2, it is clear that C(E, d) = I(E, d) is the line segment with endpoints

(
m1(E, d), E −m1(E, d)

)
and

(
E−m2(E, d),m2(E, d)

)
. The core of a two claimants bankruptcy problems is shown in Figure 3. Then

V (E, d) =
√

2
(
E − v(1)− v(2)

)
=


√

2E if 0 ≤ E ≤ d1√
2d1 if d1 ≤ E ≤ d2√
2(d1 + d2 − E) if d2 ≤ E ≤ d1 + d2

.

The graph of the piecewise linear function V (·, d) is depicted in Figure 7.

V

E
d1

√
2d1

d2 d1 + d2d1+d2
2

0

Figure 7: The volume function when |N | = 2.

The following result identifies the bankruptcy problems for which the core is not full dimensional when
there are at least three claimants.

Lemma A.1. Let (E, d) ∈ BN be a bankruptcy problem with |N | ≥ 3.

1. C(E, d) = I(E, d) if and only if either E ≤ di for all i ∈ N or E = d(N).

2. V (E, d) = 0 if and only if one of the following conditions holds:

1. E = 0. 2. E = d(N). 3. There is i ∈ N with di = 0.

Proof. If |N | ≥ 3, it holds that C(E, d) = I(E, d) if and only if either min{E, di} = E or v(i) = min{E, di}
for all i ∈ N , or equivalently, if either E ≤ di for all i ∈ N or E = d(N). Naturally, when E = 0 or E = d(N)
the core is a singleton, in fact, C(0, d) = {(0, . . . , 0)} and C(d(N), d) = {d}. So, in addition to these two cases,
V (E, d) = 0 if and only if there is at least a player i ∈ N for which max{0, E − d(N\{i})} = min{E, di}.
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If V (E, d) > 0 then C(E, d) is a (n− 1)-dimensional manifold contained in H(E, d), the efficiency hyper-
plane. Therefore H(E, d) is the tangent space at each point of the manifold. The vector (1, 1, . . . , 1) ∈ RN
is normal to the manifold at each point and it has length

√
n. For each i ∈ N the transformation

πi : RN\{i} → RN , πi(x−i) =
(
x−i, E − x−i(N\{i})

)
∈ RN defines a coordinate system for C(E, d), so

that Ci(E, d) = π−1
i (C(E, d)) ⊂ RN\{i} is the projection of the core onto RN\{i} that simply “drops” the

ith-coordinate, see Figure 8. In fact,

Ci(E, d) =
{
y ∈ RN\{i} : ri(E, d) ≤ y(N\{i}) ≤ Ri(E, d), mj(E, d) ≤ yj ≤ tj(E, d) for all j ∈ N\{i}

}
.

Let Vi(E, d) = Voln−1(Ci(E, d)) be the volume of the projection of the core C(E, d) onto RN\{i}.
Next, we compute the volume function in some easy cases. It turns out that V (·, d) is a symmetric

function with respect to the half-sum of the claims. In particular, we show that when d(N\{n}) ≤ E ≤ dn,
the nth-projection of the core, Cn(E, d), is a (n − 1)-rectangle that does not depend on the endowment E,
and so V (·, d) is constant on [d(N\{n}), dn]. Moreover, the volume of the core is

√
n times the volume of its

ith-projection onto RN\{i}.

x2 = v(2)

x3 = v(3)

x1 = v(1)

C4(E, d)

x1 = d1

x2 = d2

x3 = d3

x1 + x2 + x3 = E − v(4)⇔ x4 = v(4)

x1 + x2 + x3 = E − d4
m

x4 = d4

Figure 8: The projection C4(E, d).

Lemma A.2. Let (E, d) ∈ BN be a bankruptcy problem with |N | ≥ 3.

1. If E ∈ [0, d1] then V (E, d) =
√
n

(n−1)!E
n−1.

2. If E ∈ [ 1
2d(N), d(N)] then d(N)− E ∈ [0, 1

2d(N)] and V (E, d) = V (d(N)− E, d).

3. V (E, d) =
√
nVi(E, d) for all i ∈ N .

4. If E ∈ [d(N\{n}), dn] then Cn(E, d) = [0, d1]× · · · × [0, dn−1] and V (E, d) =
√
n
n−1∏
j=1

dj.

Proof. We know that if 0 ≤ E ≤ d1 then C(E, d) = I(E, d). The second statement follows directly from
Proposition 3.2, the self-duality of the core. Finally, let m be the (n − 1)-dimensional Lebesgue measure.
Then, for all i ∈ N ,

V (E, d) =

∫
C(E,d)

dm =

∫
π−1
i (C(E,d))

√
n dm =

√
nVi(E, d).

If E ∈ [d(N\{n}), dn] then rn(E, d) = 0 and Rn(E, d) = d(N\{n}). Also mj(E, d) = 0 and tj(E, d) = dj for
all j ∈ N\{n}. Therefore Cn(E, d) =

{
y ∈ RN\{n} : 0 ≤ yj ≤ dj , for j ∈ N\{n}

}
= [0, d1]×· · ·×[0, dn−1].
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When |N | = 2, the volume function is not differentiable at d1 and d2 (see Figure 7). On the contrary, if
|N | ≥ 3 then V (·, d) is a differentiable function. In order to prove this property we rely on a general result
relating the volume of a convex polyhedron with the volume of its faces. Let K(b) = {x ∈ Rn : Ax ≤ b} be
a convex polyhedron, where A is an m × n matrix and b is a m-vector, and denote V (b) = Voln(K(b)) its
volume as a function of b. In general, V is a continuous function of b. Let Ki(b) = {x ∈ K(b) : ai · x = bi},
i = 1, . . . ,m, be the ith-face of K(b), where ai is the ith-row of A and ai · x is the scalar product in Rn; and
denote its (n− 1)-volume by V (b, i) = Voln−1(Ki(b)). If V (b) > 0 and V (b, i) = 0 for some i = 1, . . . ,m then
constraint ai · x ≤ bi is redundant.

Theorem A.3 (Lasserre (1983)). If V (b) > 0 and V (b, i) > 0 for all i = 1, . . . ,m, then V is differentiable

at b and ∂V
∂bi

(b) = 1
||ai||V (b, i). Moreover, V (b) = 1

n

m∑
i=1

bi
||ai||V (b, i).

Applying Theorem A.3 to the ith-projection Ci(E, d) we show that the volume function is differentiable.
Moreover, we can write the derivative of V (·, d) in terms of the volumes of the faces of C(E, d).

Theorem A.4. Let d = (d1, . . . , dn) ∈ RN be a vector of claims such that 0 < d1 ≤ · · · ≤ dn. If |N | ≥ 3
then V (·, d) : [0, d(N)]→ R is a continuously differentiable function. Moreover,

1. if E ∈ [ 1
2d(N), d(N)] then ∂V

∂E (E, d) = −∂V∂E (d(N)− E, d).

2. ∂V
∂E (E, d) = 0 if E ∈ [d(N\{n}), dn].

3. if E ∈ [0, 1
2d(N)] then, for all i ∈ N ,

∂V

∂E
(E, d) =

√
n√

n− 1

(
V (E, d−i)− V (ri(E, d), d−i)

)
=

{ √
n√
n−1

V (E, d−i) if 0 ≤ E ≤ di√
n√
n−1

(
V (E, d−i)− V (E − di, d−i)

)
if di < E ≤ 1

2d(N)
.

Proof. Observe that, from Proposition 3.2, it suffices to prove that V (·, d) is differentiable on [0, 1
2d(N)].

If that is the case, the first statement follows directly. Also, from Lemma A.2, we know that if E ∈

[d(N\{n}), dn] then V (E, d) =
√
n
n−1∏
i=1

di and, therefore, ∂V
∂E (E, d) = 0. Since 1

2d(N) is halfway between

d(N\{n}) and dn we can assume that E ≤ min{ 1
2d(N), d(N\{n})} in which case E ≤ d(N\{n}) ≤ · · · ≤

d(N\{1}) and Ri(E, d) = E for all i ∈ N . Now, fix i ∈ N . Clearly,

Ci(E, d) =
{
y ∈ RN\{i} : ri(E, d) ≤ y(N\{i}) ≤ E, 0 ≤ yj ≤ tj(E, d) for all j ∈ N\{i}

}
.

If min{E, dj} = E then the constraint yj ≤ E is redundant because yj ≤ y(N\{i}) ≤ E. On the other hand,
ri(E, d) = E − di only if E ≥ di. Observe that, in order to apply Theorem A.3, the only constraints that
depend on E are y(N\{i}) ≤ E and, if E ≥ di, E − di ≤ y(N\{i}). Note that the last constraint must be
written as −y(N\{i}) ≤ di − E, so the corresponding derivative with respect to E will be negative. But,

Ci(E, d) ∩
{
y ∈ RN\{i} : y(N\{i}) = E

}
= C(E, d−i)

and, if E ≥ di,
Ci(E, d) ∩

{
y ∈ RN\{i} : y(N\{i}) = E − di

}
= C(E − di, d−i).

Combining Theorem A.3 and the chain rule we conclude that V (·, d) is differentiable at E and

∂V

∂E
(E, d) =

√
n
∂Vi
∂E

(E, d) =

√
n√

n− 1

(
V (E, d−i)− V (ri(E, d), d−i)

)
.

Therefore V (·, d) is a differentiable function on [0, 1
2d(N)] except, perhaps, at the points 0, d1, . . . , dn and

d(N\{n}), and its derivatives are given by the expressions written above. Now, it is easy to check that V (·, d)
is also differentiable at those points.

The volume function V (·, d) is monotonically increasing on [0, 1
2d(N)] and monotonically decreasing on

[ 1
2d(N), d(N)]. The graph of volume function V (·, d), depending on whether d(N\{n}) < dn or not, is
depicted in Figure 9.
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V

Ed(N\{n}) d(N)
2

dn d(N)0

V

Edn d(N)
2

d(N\{n}) d(N)0

Figure 9: The volume of the core as a function of the endowment.

Proposition A.5. Let d = (d1, . . . , dn) ∈ RN with 0 < d1 ≤ · · · ≤ dn.

1. If d(N\{n}) > dn then V (·, d) is strictly increasing on [0, 1
2d(N)] and V (·, d) is strictly decreasing on

[ 1
2d(N), d(N)], so V (·, d) attains its maximum at E = 1

2d(N).

2. If d(N\{n}) ≤ dn then V (·, d) is strictly increasing on [0, d(N\{n})], it is strictly decreasing on
[dn, d(N)] and it is constant on [d(N\{n}), dn].

Proof. The result when |N | = 2 is clear. Let |N | ≥ 3. We know from Lemma A.2 that V (·, d) is constant
on [d(N\{n}), dn] whenever d(N\{n}) ≤ dn, so it suffices to prove that V (·, d) is strictly increasing on
[0,min{ 1

2d(N), d(N\{n})}]. Since V (·, d) is a differentiable function, we have to prove that ∂V
∂E (E, d) > 0 for

all E < min{ 1
2d(N), d(N\{n})}. We proceed by induction on n. Assume that V (·, d−n) is strictly increasing

on
[
0,min

{
1
2d(N\{n}), d

(
N\{n, n − 1}

)}]
. Now, from Theorem A.4, ∂V

∂E (E, d) =
√
n√
n−1

V (E, d−n) > 0 if
0 < E < dn. On the other hand, if E ∈ [dn,

1
2d(N)) and 1

2d(N) ≤ d(N\{n}) then, again from Theorem
A.4, ∂V

∂E (E, d) =
√
n√
n−1

(
V (E, d−n) − V (E − dn, d−n)

)
. But E − dn ≤ 1

2

(
d(N\{n}) − dn

)
≤ 1

2d(N\{n})
and E ≤ d(N\{n}) ≤ d

(
N\{n, n − 1}

)
+ dn, so E − dn ≤ d

(
N\{n, n − 1}

)
. Therefore E − dn ≤

min
{

1
2d(N\{n}), d

(
N\{n, n − 1}

)}
. Now, 1

2d(N\{n}) is halfway between E − dn and d(N) − E, so by
the induction hypothesis and the symmetry of V (·, d−n), we have that V (E − dn, d−n) ≤ V (u, d−n) for all
u ∈ [E − dn, d(N)−E]. In particular, since E − dn < E < d(N)−E then V (E − dn, d−n) < V (E, d−n) and,
consequently, ∂V∂E (E, d) > 0.

B Computation of the core-center rule
In some particular cases the computation of the core-center rule can be carried out easily or can be greatly
simplified.

Proposition B.1. Let (E, d) ∈ BN be a bankruptcy problem such that |N | ≥ 3 and 0 ≤ d1 ≤ · · · ≤ dn.

1. If E ≤ d1 then µi(E, d) = E
n for all i ∈ N .

2. If di ≥ E for some i ∈ N , then µi(E, d) = µj(E, d) for all j > i.

3. If E ≥ d(N\{1}) then µi(E, d) = di − d(N)−E
n for all i ∈ N .

4. If E = 1
2d(N) then µ(E, d) = d

2 .

5. If d(N\{n}) ≤ E ≤ dn then µj(E, d) =
dj
2 for all j ∈ N\{n} and µn(E, d) = E − 1

2d(N\{n}).

6. If E > d(N\{i}) for some i ∈ N then µj(E, d) = (dj − di) + µi(E, d) for all j > i.

Proof. The first statement follows directly from Lemma A.1 while the second is a consequence of equal
treatment of equals and claims truncation invariance (see Proposition 4.1). The third and fourth statements
hold because µ satisfies self-duality. The fifth comes from Lemma A.2 since µj(E, d) = µj(Cn(E, d)) for all
j ∈ N\{n} and µ(E, d) ∈ H(E, d). Finally, if E > d(N\{i}) for some i ∈ N then d(N) − E < di and
µi(d(N) − E, d) = µj(d(N) − E, d) for all j > i. Now, by self-duality, µi(d(N) − E, d) = di − µi(E, d) and
µj(d(N)− E, d) = dj − µj(E, d), so µj(E, d) = (dj − di) + µi(E, d).
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Next, we establish the fundamental relationship between the core-center rule and the center of gravity of
the ith-projection Ci(E, d).

Proposition B.2. Let (E, d) ∈ BN be a bankruptcy problem and i ∈ N . If |N | ≥ 3 then µj(E, d) =
µj(Ci(E, d)) for all j ∈ N\{i} and µi(E, d) = E −

∑
j∈N\{i}

µj(E, d).

Proof. Let m be the (n − 1)-dimensional Lebesgue measure. We know from Lemma A.2 that V (E, d) =
√
nVi(E, d). Then µj(E, d) = 1

V (E,d)

∫
C(E,d)

xjdm =
1

V (E, d)

∫
Ci(E,d)

√
nxjdm =

1

Vi(E, d)

∫
Ci(E,d)

xjdm =

µj(Ci(E, d)) for all j ∈ N\{i}. Finally, the expression for µi(E, d) follows because
∑
k∈N

µk(E, d) = E.

The properties already stated are very helpful to simplify the computation of the core-center rule in
some cases, in particular when the number of claimants is small. The next example illustrates how to apply
Proposition B.2 to the computation of the core-center rule when |N | = 3.

Example B.3. Let N = {1, 2, 3}, d = (1, 2, 2) ∈ RN and E = 3. Now d(N) = d1 + d2 + d3 = 5 and

x1

x2

0 1

2

Figure 10: The projection C3(d(N)− E, d).

E > 1
2d(N). Since µ satisfies self-duality, µ(E, d) = d− µ(d(N)− E, d). But d(N)− E = 2 so

C3(d(N)− E, d) =
{

(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2, x1 + x2 ≤ 2
}
.

Now, V3(d(N)− E, d) =

∫ 1

0

∫ 2−x1

0

dx2dx1 = 3
2 . By Proposition B.2,

µ1(d(N)− E, d) = µ1(C3(d(N)− E, d)) =
2

3

(∫ 1

0

∫ 2−x1

0

x1dx2dx1

)
= 4

9 .

Applying equal treatment of equals we have that µ2(d(N)−E, d) = µ3(d(N)−E, d) = 7
9 . So, finally µ(E, d) =

d− µ(d(N)− E, d) = ( 5
9 ,

11
9 ,

11
9 ).

C Decompositions of the core of a bankruptcy game
Let (E, d) ∈ BN . We give two different decompositions of the core of the bankruptcy game C(E, d) as the
union of two sets C(E, d) = C1∪C2, with Vol(C1∩C2) = 0, and such that C1 and C2 are cores of bankruptcy
games, possibly translated by a specific vector, associated with bankruptcy problems obtained from (E, d).
For each i ∈ N , denote ei ∈ RN the vector with 1 in the ith-coordinate and 0’s elsewhere.

Assume that (E, d) ∈ BN is a bankruptcy problem for which m(E, d) = 0. Let i ∈ N\{n} such that
di < E. Intuitively, the first decomposition translates order preservation in awards in terms of cores of
bankruptcy games. In fact, it shows that C(E, d) contains the core of the bankruptcy game associated with
the problem where agent i + 1 claims di, that is C1 = C(E, a) with a = (d1, . . . , di, di, di+2, . . . , dn). The
other stable allocations, except for a set of null measure, belong to the difference C2 = C(E, d)\C1. Basically,
C2 is the the core of the bankruptcy game associated with the bankruptcy problem with endowment E − di
and where agent i+ 1 claims the difference di+1 − di, but with agent i+ 1 receiving and extra award di.
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Proposition C.1. Let (E, d) ∈ BN be a bankruptcy problem such that m(E, d) = 0. Let i ∈ N\{n} such
that di < E and denote a = (d−(i+1), di), b = die

i+1, and c = d− b. Then,

C(E, d) = C(E, a) ∪
(
b+ C(E − di, c)

)
and Vol

(
C(E, a) ∩

(
b+ C(E − di, c)

))
= 0.

Proof. Since m(E, d) = 0, the bankruptcy game v ∈ GN associated with the bankruptcy proble (E, d) ∈ BN
is a zero-normalized game. Fix i ∈ N\{n} such that di < E. First, note that (E, a) and (E − di, c) are, in
fact, bankruptcy problems, because v(i+ 1) = 0. Then, let va, vc ∈ GN be the bankruptcy games associated
with (E, a) ∈ BN and (E − di, c) ∈ BN respectively. We have va(k) = 0 if k ≤ i + 1 and vc(k) = 0 for all
k ∈ N . Moreover, va(k) ≤ min{E − di, dk} if k > i+ 1. Then,

C(E, d) =
{
x ∈ RN : x(N) = E, 0 ≤ xk ≤ dk if k ≤ i, 0 ≤ xk ≤ min{E, dk} if k > i

}
C(E, a) =

{
y ∈ RN : y(N) = E, 0 ≤ yi+1 ≤ di,

0 ≤ yk ≤ dk if k ≤ i
va(k) ≤ yk ≤ min{E, dk} if k > i+ 1

}
C(E − di, c) =

{
z ∈ RN : z(N) = E − di,

0 ≤ zk ≤ min{E − di, dk} if k 6= i+ 1
0 ≤ zi+1 ≤ min{E − di, di+1 − di}

}
.

It is easy to check that C(E, a) ⊂ C(E, d), b+C(E− di, c) ⊂ C(E, d), and that C(E, a) and b+C(E− di, c)
are separated by the hyperplane xi+1 = di. But if x ∈ C(E, d) and x 6∈ C(E, a) then either di ≤ xi+1 <
min{E, di+1} in which case 0 ≤ xi+1 − di < min{E − di, di+1 − di}; or 0 ≤ xk < va(k) for some k > i+ 1 in
which case 0 ≤ xk < min{E − di, dk}. Then z = x− b ∈ C(E − di, c).

The second decomposition reflects how claim monotonicity can be interpreted in terms of cores of
bankruptcy games. Let (E, d) ∈ BN and assume that agent’s i claim increases from di to d′i and con-
sider the bankruptcy problem (E, d′) ∈ BN , with d′ = (d1, . . . , di−1, d

′
i, di+1, . . . , dn). Let (E − di, c) ∈ BN ,

with c = (d1, . . . , di−1, d
′
i − di, di+1, . . . , dn), be the bankruptcy problem obtained from (E, d) by reducing

the endowment by di and where agent i claims the difference d′i − di. We show that C(E, d) ⊂ C(E, d′). In
fact, any stable allocation that belongs to the core C(E, d′) is the sum of three allocations: one in the core
C(E, d), another in C(E − di, c) and a fixed allocation that awards di to agent i.

Proposition C.2. Let (E, d) ∈ BN be a bankruptcy problem and i ∈ N\{n} such that di < E. Let
di < d′i ≤ di+1 and denote d′ = (d−i, d

′
i), b = die

i, and c = d′ − b. Then,

C(E, d′) = C(E, d) ∪
(
b+ C(E − di, c)

)
and Vol

(
C(E, d) ∩

(
b+ C(E − di, c)

))
= 0.

Proof. Let v ∈ GN the bankruptcy game associated with the bankruptcy problem (E, d) ∈ BN and fix
i ∈ N\{n} such that di < E. Certainly, (E, d′) and (E−di, c) are bankruptcy problems so denote vd′ , vc ∈ GN
the bankruptcy games associated with (E, d′) ∈ BN and (E−di, c) ∈ BN respectively. We have vd′(i) = v(i),
vc(i) = 0, vc(j) = vd′(j) ≥ v(i) for j 6= i. Therefore,

C(E, d′) =
{
x ∈ RN : x(N) = E, v(i) ≤ xi ≤ min{E, d′i}, vd′(j) ≤ xj ≤ min{E, dj} if j 6= i

}
C(E, d) =

{
y ∈ RN : y(N) = E, v(i) ≤ yi ≤ di, v(j) ≤ yj ≤ min{E, dj} if j 6= i

}
C(E − di, c) =

{
z ∈ RN : z(N) = E − di,

0 ≤ zi ≤ min{E − di, d′i − di}
vd′(j) ≤ zj ≤ min{E − di, dj} if j 6= i

}
.

It is easy to check that C(E, d) ⊂ C(E, d′), b+C(E−di, c) ⊂ C(E, d′), and that C(E, d) and b+C(E−di, c) are
separated by the hyperplane xi = di. But if x ∈ C(E, d′) and x 6∈ C(E, d) then either di < xi ≤ min{E, d′i}
in which case 0 < xi − di ≤ min{E − di, d

′
i − di}, or vd′(j) ≤ xj < v(j) for some j 6= i, in which case

vd′(j) ≤ xj < min{E − di, dj} because v(j) ≤ min{E − di, dj}. Then z = x− b ∈ C(E − di, c).
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D Integral representations of the core-center rule
For each i ∈ N consider the function gi : (0, d(N))× [0, d(N\{i})]→ R defined as:

gi(E, u) =

√
n√

n− 1

V (u, d−i)

V (E, d)
, for all (E, u) ∈ (0, d(N))× [0, d(N\{i})].

Clearly, gi(E, u) ≥ 0 for all (E, u) ∈ (0, d(N))× [0, d(N\{i})]. According to Theorem A.4, gi is a continuous
differentiable function, ∂gi∂E is continuous, and ∂gi

∂E (E, u) = −
√
n√
n−1

V (u,d−i)
(V (E,d))2

∂V
∂E (E, d).

Theorem D.1. Assume that |N | ≥ 3. If (E, d) ∈ BN and i ∈ N then
∫ min{E,di}

v(i)

gi(E,E − s)ds = 1 and

µj(E, d) =

∫ min{E,di}

v(i)

µj(E − s, d−i)gi(E,E − s)ds for all j ∈ N\{i}.

Proof. Let us simplify the notation by writing ai = v(i), bi = min{E, di}, Ii = [ai, bi], C = C(E, d) and
Cxi = C(E − xi, d−i). The transformation πn(x1, . . . , xn−1) = (x1, . . . , xn−1, E − x1 − · · · − xn−1) defines a
parametrization of the hyperplane x1+· · ·+xn = E. The vector (1, 1, . . . , 1) ∈ Rn is normal to the hyperplane
at each point and it has length

√
n. For each xi ∈ Ii the transformation hxi

(x1, . . . , xi−1, xi+1, . . . , xn−1, (E−
xi) − x1 − · · · − xi−1 − xi+1 − · · · − xn−1) defines a parametrization1 of the hyperplane x1 + · · · + xi−1 +
xi+1 + · · · + xn−1 = E − xi. The vector (1, 1, . . . , 1) ∈ Rn−1 is normal to the hyperplane at each point and
it has length

√
n− 1. From Proposition 3.1 it is easy to check that π−1

n (C) =
⋃

xi∈Ii
{xi} × h−1

xi
(Cxi

). If mn−1

and mn−2 denote the (n− 1)-dimensional and (n− 2)-dimensional Lebesgue measures respectively, then:

Voln−1(C) =

∫
C

dmn−1 =
√
n

∫
π−1
n (C)

dmn−1 =
√
n

∫ bi

ai

(∫
h−1
xi

(Cxi
)

dmn−2

)
dxi

Voln−2(Cxi
) =

∫
Cxi

dmn−2 =
√
n− 1

∫
h−1
xi

(Cxi
)

dmn−2.

Combining these two expressions we obtain that Voln−1(C) =
√
n√
n−1

∫ bi

ai

Voln−2(Cxi
)dxi, or, equivalently,∫ bi

ai

gi(E,E − xi)dxi = 1. Now, if j 6= i, then
∫
C

xjdmn−1 =
√
n√
n−1

∫ bi

ai

(∫
Cxi

xjdmn−2

)
dxi. Therefore,

µj(C) =
1

Voln−1(C)

∫
C

xjdmn−1 =
1

Voln−1(C)

√
n√
n−1

∫ bi

ai

(∫
Cxi

xjdmn−2

)
dxi

=
1

Voln−1(C)

√
n√
n−1

∫ bi

ai

µj(Cxi) Voln−2(Cxi)dxi =

∫ bi

ai

µj(Cxi)gi(E,E − xi)dxi,

because, by definition, µj(Cxi
) = 1

Voln−2(Cxi
)

∫
Cxi

xjdmn−2.

Now, we can prove that the core-center rule is a differentiable function of the endowment. For each j ∈ N
denote χj(E, d) = 0 if E < dj and χj(E, d) = 1 otherwise.

Theorem D.2. Let d = (d1, . . . , dn) ∈ RN be a vector of claims such that 0 < d1 ≤ · · · ≤ dn. If |N | ≥ 3
then µ(·, d) is a continuously differentiable function on [0, d(N)]. Moreover,

1. if E ∈ [0, d1] then ∂µj

∂E (E, d) = 1
n for all j ∈ N .

2. if E ∈ [d(N\{n}), dn] then ∂µj

∂E (E, d) = 0 for all j ∈ N\{n} and ∂µn

∂E (E, d) = 1.

1If i = n take hxn (x2, . . . , xn) = (E − x2 − · · · − xn, x2, . . . , xn).
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3. if E ∈
[
d1,min

{
1
2d(N), d(N\{n})

}]
then

∂µj
∂E

(E, d) = gn(E,E)
(
µj(E, d−n)− µj(E, d)

)
+ χn(E, d)gn(E,E − dn)

(
µj(E, d)− µj(E − dn, d−n)

)
, for all j ∈ N\{n}

∂µn
∂E

(E, d) = g1(E,E)
(
µn(E, d−1)− µn(E, d)

)
+ g1(E,E − d1)

(
µn(E, d)− µn(E − d1, d−1)

)
4. if E ∈ [ 1

2d(N), d(N)] then d(N)− E ∈ [0, 1
2d(N)] and ∂µj

∂E (E, d) =
∂µj

∂E (d(N)− E, d) for all j ∈ N .

Proof. If E ∈ [0, d1] we know from Proposition B.1 that ∂µj

∂E (E, d) = 1
n for all j ∈ N . If E ∈ [d(N\{n}), dn],

again from Proposition B.1, we conclude that ∂µj

∂E (E, d) = 0 for all j ∈ N\{n} and ∂µn

∂E (E, d) = 1. Next, let
us prove that µ(·, d) is differentiable on the interval

[
d1,min

{
1
2d(N), d(N\{n})

}]
. We distinguish two cases.

Case 1: If d(N\{n}) < 1
2d(N).

0 d1 d(N\{n}) 1
2d(N) dn d(N)

Take E ∈ [d1, d(N\{n})]. Then rn(E, d) = max{0, E − dn} = 0 and Rn(E, d) = min{E, d(N\{n})} = E

so, by Theorem D.1, we have that µj(E, d) =

∫ E

0

µj(u, d−n)gn(E, u)du for all j ∈ N\{n}. Recall that gn

is a continuous differentiable function, ∂gn∂E is continuous, and ∂gn
∂E (E, u) = −

√
n√
n−1

V (u,d−n)
(V (E,d))2

∂V
∂E (E, d). Now,

applying Leibniz’s rule for differentiation under the integral sign and using the expression for ∂V
∂E (E, d) given

in Theorem A.4, we obtain that µj(·, d) is differentiable at E for all j ∈ N\{n} and

∂µj
∂E

(E, d) =

∫ E

0

µj(u, d−n)
∂gn
∂E

(E, u)du+ µj(E, d−n)gn(E,E)

= − n

n− 1

∫ E

0

µj(u, d−n)
V (u, d−n)V (E, d−n)(

V (E, d)
)2 du+ µj(E, d−n)

V (E, d−n)

V (E, d)

√
n√

n− 1

=

√
n√

n− 1

V (E, d−n)

V (E, d)

(
−
∫ E

0

µj(u, d−n)
V (u, d−n)

V (E, d)

√
n√

n− 1
du+ µj(E, d−n

)
= gn(E,E)

(
µj(E, d−n)− µj(E, d)

)
.

Since r1(E, d) = E − d1 and R1(E, d) = E, from Theorem D.1, µn(E, d) =

∫ E

E−d1
µn(u, d−1)g1(E, u)du.

Applying the Leibniz’s rule and the chain rule we have that µn(·, d) is differentiable at E and

∂µn
∂E

(E, d) =

∫ E

E−d1
µn(u, d−1)

∂g1

∂E
(E, u)du+ µn(E, d−1)g1(E,E)− µn(E − d1, d−1)g1(E,E − d1).

From Theorem A.4 we know that ∂g1
∂E (E, u) = − n

n−1

V (u,d−1)
(
V (E,d−1)−V (E−d1,d−1)

)(
V (E,d)

)2 . Then,

∂µn
∂E

(E, d) = −µn(E, d)(g1(E,E)− g1(E,E − d1)) + µn(E, d−1)g1(E,E)− µn(E − d1, d−1)g1(E,E − d1)

= g1(E,E)
(
µn(E, d−1)− µn(E, d)

)
+ g1(E,E − d1)

(
µn(E, d)− µn(E − d1, d−1)

)
.

Case 2: If d(N\{n}) > 1
2d(N).

0 d1 dn 1
2d(N) d(N\{n}) d(N)
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If E ∈ [d1, dn] then rn(E, d) = 0, Rn(E, d) = E, r1(E, d) = E − d1 and R1(E, d) = E. By Theorem

D.1, µj(E, d) =

∫ E

0

µj(u, d−n)gn(E, u)du for all j ∈ N\{n} and µn(E, d) =

∫ E

E−d1
µn(u, d−1)g1(E, u)du.

Applying Leibniz’s rule as in the previous case we conclude that µ(·, d) is differentiable at E and we obtain the
same expressions for the derivatives ∂µj

∂E (E, d) for all j ∈ N . Finally, If E ∈ [dn,
1
2d(N)] then rn(E, d) = E−dn,

Rn(E, d) = E, r1(E, d) = E − d1 and R1(E, d) = E. Thus, µj(E, d) =

∫ E

E−dn
µj(u, d−n)gn(E, u)du for all

j ∈ N\{n} and µn(E, d) =

∫ E

E−d1
µn(u, d−1)g1(E, u)du. As above, the Leibniz’s rule allows us to assert that

µ(·, d) is differentiable at [dn,
1
2d(N)] and to compute its derivatives as above.

Finally, we know that µ(·, d) is a continuous function on [0, d(N)]. We have seen that µ(·, d) is also a
differentiable function on [0, 1

2d(N)] except perhaps at the points d1, dn and d(N\{n}). It is easy to check
that, in fact, µ(·, d) is also differentiable at those points. Therefore µ(·, d) is differentiable on [0, 1

2d(N)].
But, since the core-center rule satisfies self-duality, if E ∈ [ 1

2d(N), d(N)] then d(N) − E ∈ [0, 1
2d(N)] and

µ(E, d) = d − µ(d(N) − E, d), so µ(·, d) is differentiable at E and ∂µj

∂E (E, d) =
∂µj

∂E (d(N) − E, d) for all
j ∈ N .

E Core-center rule bounds
Certainly, the core-center rule satisfies 1

|N | -truncated-claims lower bounds on awards when E ∈ [0, d1]. Now,
we show that this is also the case if E ∈ [d1, d2].

Lemma E.1. Let (E, d) ∈ BN be a bankruptcy problem such that 0 ≤ d1 ≤ · · · ≤ dn. If d1 < E ≤ d2 then
µ1(E, d) ≥ d1

n and µj(E, d) ≥ E
n for all j ∈ N\{1}.

Proof. It is straightforward from equation (1) that the result holds when |N | = 2. By Theorem D.1 we have
that

µ1(E, d) =

∫ E

0

µ1(u, d−n)gn(E, u)du =

∫ d1

0

µ1(u, d−n)gn(E, u)du+

∫ E

d1

µ1(u, d−n)gn(E, u)du. (2)

But∫ d1

0

µ1(u, d−n)gn(E, u)du =

∫ d1

0

µ1(u, d−n)
V (u, d−n)

V (E, d)

V (d1, d)

V (d1, d)

√
n√

n− 1
du

=
V (d1, d)

V (E, d)

∫ d1

0

µ1(u, d−n)gn(d1, u)du =
V (d1, d)

V (E, d)
µ1(d1, d) =

V (d1, d)

V (E, d)

d1

n
. (3)

Let u ∈ (d1, E]. Since the core-center rule satisfies endowment monotonicity we know that µ1(u, d−n) ≥
µ1(d1, d−n) = d1

n−1 and, from Theorem A.4, ∂V∂t (u, d) =
√
n√
n−1

V (u, d−n). Therefore,

∫ E

d1

µ1(u, d−n)gn(E, u)du ≥ d1

n− 1

∫ E

d1

gn(E, u)du =
d1

n− 1

1

V (E, d)

∫ E

d1

√
n√

n− 1
V (u, d−n)du

=
d1

n− 1

1

V (E, d)

(
V (E, d)− V (d1, d)

)
=

d1

n− 1

(
1− V (d1, d)

V (E, d)

)
. (4)

Combining (2), (3), and (4), and since V (d1, d) ≤ V (E, d), we have that

µ1(E, d) ≥ d1

n

V (d1, d)

V (E, d)
+

d1

n− 1

(
1− V (d1, d)

V (E, d)

)
=

d1

n− 1
− d1

n(n− 1)

V (d1, d)

V (E, d)

≥ d1

n− 1
− d1

n(n− 1)
=
d1

n
.

Finally, since the core-center rule satisfies order preservation of awards we have that µn(E, d) ≥ E
n . But then,

by Proposition B.1, µj(E, d) = µn(E, d) ≥ E
n for all j ∈ N\{1}.
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Let us see that if the core-center rule satisfies 1
|N | -truncated-claims lower bounds on awards for any

bankruptcy problem for which the initial endowment lies between the claims i − 1 and i then it satisfies
1
|N | -truncated-claims lower bounds on awards for any bankruptcy problem for which the initial endowment
lies between the claims i and i+ 1.

Lemma E.2. Let i ∈ N\{1} and let d, c ∈ RN such that 0 ≤ d1 ≤ · · · ≤ dn and 0 ≤ c1 ≤ · · · ≤ cn. If
µj(E

′, c) ≥ 1
n min{E′, cj} for all j ∈ N and E′ ∈ [ci−1, ci] then µj(E, d) ≥ 1

n min{E, dj} for all j ∈ N and
E ∈ [di, di+1].

Proof. Let j ∈ N\{i} and E ∈ [di, di+1]. Then, since the core-center rule satisfies other-regarding claim
monotonicity µj(E, d) = µj

(
E, (d1, . . . , di, E, . . . , E)

)
≥ µj

(
E, (d1, . . . , di−1, E, . . . , E)

)
. But, from the as-

sumption, we have that µj
(
E, (d1, . . . , di−1, E, . . . , E)

)
≥ 1

n min{E, dj} so µj(E, d) ≥ 1
n min{E, dj}. On the

other hand, applying other-regarding claim monotonicity and anonymity,

µi(E, d) = µi
(
E, (d1, . . . , di, E, . . . , E)

)
≥ µi

(
E, (d1, . . . , di−2, E, di, E, . . . , E)

)
= µi−1

(
E, (d1, . . . , di−2, di, E, . . . , E)

)
.

By the hypothesis, µi−1

(
E, (d1, . . . , di−2, di, E, . . . , E)

)
≥ 1

n min{E, di} so µi(E, d) ≥ 1
n min{E, di}.
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