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Abstract

Regulatory restrictions about the maximum number of FADs by vessel have been
established in the tuna fishing industry during the last years, which incorporate new
constraints on tuna fishing companies that need, however, to make profitable their
high inversions. Based on real-data and argued with the scope of game theory, we
address a new way of working for these companies related to the use of FADs between
vessels, proving that sharing FADs maximizes both the fuel and time to entire
fleets. Our findings show that, with the correct incentives, all stakeholders –company,
skipper, and environment– can improve their results jointly when information is
shared.
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1 Introduction

The performance of the tropical tuna fishing industry is, more than ever, bound to the
use of drifting fish aggregating devices (FADs), which have become widespread since 1991
(Ariz, Delgado, Fonteneau, Gonzales Costas, & Pallarés, 1992). With the scope of new
regulations affecting the tuna industry, this paper addresses a study from the point of
view of efficiency using game theory as theoretical framework.

The global tuna fishery is one of the largest in the world. The most widely used
and fastest-growing fishing gear for targeting tuna is the purse seine (PS). Tropical PS
started to operate in the Atlantic Ocean in the 1960s and were introduced into the Indian
Ocean in the early 1980s. The tuna species are skipkack (Katsuwonus pelamis), yellowfin
(Thunnus albacares), and bigeye (Thunnus obesus), and they tend to associate with
objects floating at the surface of the ocean (Castro, Santiago, & Santana-Ortega, 2001;
P. Fonteneau & Pianet, 2000). The aggregate behavior of tuna with floating objects was
first observed with natural floating objects (FOBs) from river mouths. With the aim
of imitating FOBs, fishers started deploying large numbers of their own FOBs. These
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human-made drifting FADs generally consisted of bamboo with large pieces of net hanging
below for stability in the surface currents, and they would stay adrift for up to 2 months
(Ménard, Stéquert, Rubin, Herrera, & Marchal, 2000).

The increasing use of FADs concurrently resulted in apparent increases in PS catches
per unit effort (CPUE) over time (A. Fonteneau, Chassot, & Bodin, 2013; Maufroy et al.,
2016). The extensive use of FADs by the PS fishery industry increases the possibility of
a number of negative impacts, including a reduction in yield per recruitment of target
tuna species, increased by-catch and perturbation of the pelagic ecosystem balance, and
alteration of the normal movements of the species associated with FADs (Bromhead,
Foster, Attard, Findlay, & Kalish, 2003; P. Fonteneau & Pianet, 2000), however these
effects are difficult to estimate (Lopez, Moreno, Sancristobal, & Murua, 2014).

Due to the increased use of FADs, recent efforts from regional fisheries management
organizations (RFMOs) have produced regulations on the number of FADs that a PS
can manage. Other restrictions affect the global marine fisheries, like the minimization
of bycatch and discards (Gilman, 2011; Zeller, Cashion, Palomares, & Pauly, 2018).

With these newly implemented restrictions, it is mandatory that the tuna fishing
industry optimize the use of FADs. Although many studies have been published regarding
the use of FADs and their implications, little research exists in how to help the tuna
fishing industry optimize their fishing practices (Groba, Sartal, & Vázquez, 2015).

In this context, our work addresses a new way of working for the tuna fishing companies
related to the use of FADs between vessels, proving that sharing FADs maximizes fuel
efficiency and use of time and decreases CO2 emissions across entire fleets. First, with
a foundation in game theory and the well-being assessment in particular, two different
theoretical mechanisms were developed: one without compensation and the other with
compensation. The first mechanism (without compensation) explains why many vessels
do not like sharing FADs, and the second mechanism (with compensation), shows an
equilibrium where all vessels want to share FADs. Second, this theoretical approach is
evaluated empirically with real-data through simulations, and the expected result emerges:
There is a situation in which all the players –company and skippers– win, proving that
best route optimization takes place when FADs information is shared between vessels.
Data for this study come from different groups of tuna vessels retrieving their FADs in
the Indian Ocean during April 2017.

The paper is organized as follows. The next section provides a review of the literature.
Section 3 describes the game theory approach. Section 4 introduces the data, the
experimental design and discusses the results. Finally, Section 5 concludes by highlighting
the paper’s main contributions and implications.

2 Background

The use of FADs by PS has had evolved over the years to improve fishing efficiency. The
FAD itself has undergone improvements in shape, materials, and the lengths of nets,
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both to drift with the currents of interest and also for minimizing the risk of entangling
turtles and other non-targeted species (Girard, Benhamou, & Dagorn, 2004). FADs have
also evolved technologically. Since the beginning, the use of artificial FADs has relied on
tracking buoys to know where the FADs are. The first buoys were radio-based, and each
vessel used secret frequencies to locate its own floating objects (Ménard et al., 2000). In
1996, GPS buoys with a virtually unlimited range appeared on the market and positively
affected the expansion of fishing areas (Morón, Areso, & Pallares, 2001).

During the 2000s, satellite technologies, including Inmarsat D+ and Iridium SBD,
became affordable alternative for the buoys (Moreno, Dagorn, Sancho, & Itano, 2007).
The use of satellite communications was a revolution for the tuna fishing industry because,
although each buoy had a monthly airtime fee, there were many advantages compared
to the previous buoys based on radio technology. Some of these advantages included
receiving FAD positions at any distance and commanding the buoys from the vessel.
Further, satellite buoys did not use large carbon antennas for transmission like the radio
buoys did. Additionally, satellite buoys were difficult to detect by radar, making them
less likely to be stolen, which was a big advantage over radio buoys. Finally, satellite
communication technology provided vessels the capacity to share their FADs positions
with other vessels, which allowed vessels to work together with the aim of improving
their fishing efficiency.

The last buoy improvement was the development of echo-sounders, which were
introduced around 2008 to monitor the amount of biomass aggregated beneath the
FAD (Lopez et al., 2014). This new technological device reduced the searching time
(i.e., enables remote identification of FADs with associated tunas) and provided new
information for fishers to learn more about the location and behavior of tuna and other
associated species. Several indicators suggest that echo-sounder buoys could be as
important or more important than other significant technological developments in the
fishery industry, such as the introduction of sonar (Lopez et al., 2014).

The echo-sounder technology embedded in the buoy was a game-changer for the
tropical tuna industry in terms of optimization. Before this improvement, PS traveled
from FAD to FAD searching for tuna. After the introduction of the echo-sounder tuna
buoys, they only traveled to FADs that had fish beneath, which improved their fishing
efficiency by saving time and fuel and by discovering new fishing areas. Such efficiency
made PS want more echo-sounder buoys in the water (then FADs), with the aim of
constant fishing.

The consequences of this were an increase in the use of FADs. For example, in the
Atlantic Ocean (A. Fonteneau, Chassot, & Gaertner, 2015), the total number of FADs
increased 730%, from 1, 175 FADs active in January 2007 to 8, 575 in August 2013. In the
Indian Ocean this number increased 458%, from 2, 250 FADs in October 2007 to 10, 300
FADs in September 2013 (Maufroy et al., 2016). This increase has resulted in regulation
from RFMOs of the number of FADs that a PS can manage, for example, in the Indian
Ocean, where the number of FADs as defined in Resolution 15/08, paragraph 7, will be
no more than 350 active instrumented buoys and 700 acquired annually instrumented
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buoy per vessel per year (IOTC circular 2017-061). Currently, this limitation is also
being followed in the Atlantic Ocean through the International Commission for the
Conservation of Atlantic Tunas (ICCAT), and all indicators predict that the Pacific
Ocean will follow the same initiative via the Inter-American-Tropical-Tuna-Commission
(IATTC) (P. Fonteneau & Pianet, 2000).

Regarding PS activity with FADs, it is noteworthy that skippers have important
economic incentives depending on how many tons they fish. Meanwhile, tuna fishing
companies or firms pay these incentives with the aim of maximizing the number of fished
tons of the whole company. The costs of the entire fleet are assumed by the firm, including
salaries, goods, and fuel, among others.

In terms of fishing management and efficiency, Salas and Gaertner (2004) showed
how essential it is for effective management to know the dynamics of the fisheries. Bez,
Walker, Gaertner, Rivoirard, and Gaspar (2011) used a vessel monitoring system (VMS)
to measure tuna fishing efforts to study and quantify the spatial dynamic of the tropical
tuna PS fishing activity. In terms of fuel consumption, Parker, Vázquez-Rowe, and
Tyedmers (2015) analyzed fuel performance and the carbon footprint of the global PS
tuna fleet. Meanwhile Hospido and Tyedmers (2005) employed life cycle assessment
(LCA) to quantify the scale and importance of emissions that result from the range
of industrial activities associated with contemporary Spanish PS fisheries. Gaertner
and Dreyfus-Leon (2004) analyzed the shape of the relationship between CPUE and
abundance in a tuna PS fishery, using a simulation with artificial neural networks. In
terms of fuel consumption efficiency, Groba et al. (2015) showed how important it can be
to optimize the route of a tuna vessel retrieving FADs.

There are different studies in terms of efficiency in different fisheries, for example
Belhabib, Greer, and Pauly (2018) compared the artisanal fisheries versus the industrial
fisheries, showing that the catches per unit effort (CPUE) of the artisanal fisheries was
11 times lower than industrial CPUE. Guijarro, Ordines, and Massut́ı (2017) studied the
bottom trawl fishery in order to improve the efficiency in the Western Mediterranean.
Another example is given by Rust, Yamazaki, Jennings, Emery, and Gardner (2017),
discussing the excess capacity and efficiency in the quota managed Tasmanian Rock
Lobster Fishery, or the efficiency in the sardinian fisheries cooperatives (Madau, Furesi,
& Pulina, 2018).

In the case of tropical tuna fishery efficiency, the literature is scarce. For this reason,
and with recent RFMO regulations in mind, the proper use of FADs by tuna vessels is a
matter of great importance for tuna fisheries.

In this paper, tuna fishing vessels behaviours using FADs is studied for first time
from the point of view of game theory. Indeed, through real-data simulations, this paper
shows that there are policies that change ways tuna vessels work with FADs. If tuna
fishing companies settle on these new policies they could improve their overall efficiency.
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3 The tuna fishing vessels problem: A game theory ap-
proach

3.1 The tuna fishing vessels problem

Tuna skippers have important economic incentives that directly depend on how many
tons they fish. These incentives also depend on the tuna ton price (Jeon, Reid, & Squires,
2008). Because of this, it is important for skippers to maximize the number of ton fished;
the more a vessel fishes in less time, the better. A tuna vessel faces, for instance, an
optimization problem regarding which route to follow to increase fishing using its FADs,
which drift in the ocean (Groba et al., 2015).

Each vessel has its own limited number of FADs to fish. Tuna vessels usually work in
small groups, of two or three fishing vessels assisted by a supply vessel to deploy and
retrieve FADs from the ocean (Arrizabalaga et al., 2001). In these cases, FADs are shared
among the group of fishing vessels, and incentives are shared as well. Groups of vessels
that fish together are share confidence, which is one reason they are typically small.

By contrast, firms want to maximize the overall company profits, which means that
vessels have to fish as much as they can and that variable costs, such as fuel, crew costs,
and equipment must be minimized. This means optimizing fishing of n vessels (vessels
that the firm owns) with m FADs (the sum of FADs from all the vessels of the company).

In this scenario, there is a trade-off between firm’s and the skippers’ interests,
highlighted by the limitation of FADs as dictated by RFMOs. Facing this situation, a
new scenario for analysis and improvement appears, hinging on how to maximize the
profits for all agents. The aim of this paper is to study this equilibrium in detail with
real-data and explain how and why tuna fisheries currently operate. Further, this paper
presents a new proposal for FAD sharing policies, which shows improvements for both
individual and collective performance and reduction of CO2 emissions.

3.2 A game theory approach

A theoretical model was introduced to study the problem described previously. We
considered two different mechanisms that the firm can use to incentivize vessels to
share FADs. When vessels share FADs, the total distance traveled by all vessels is
reduced, which produces cost savings for the firm. Our analysis was conducted through
a non-cooperative game with incomplete information following the model of Aumann
(1976), which we believe is the most suitable for this case. We also consider the Bayesian
Nash equilibria (BNE) (Nash, 1951), the most standard solution for these kind of games
(Harsanyi, 1967).

Let N = {1, . . . , n} the set of tuna vessels, briefly, vessels. We assume that all tuna
vessels work for the same firm, which we denote by f .

There is a finite number of FADs (or buoys) that have been assigned to the vessels
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following some criteria. We assume that each FAD is assigned to a single vessel. Thus,
each vessel i ∈ N has an initial endowment bi =

{(
bki
)}ni

k=0
=
{(
xki , y

k
i

)}ni

k=0
. The

interpretation is the following. Vessel i has been assigned to handle ni FADs
{
b1i , . . . , b

ni
i

}
.

The position of each FAD k with k = {1, . . . , ni} is given by
(
xki , y

k
i

)
where xki denotes

the latitude and yki the longitude. Besides we denote by b0i =
(
x0i , y

0
i

)
the position of

vessel i at the beginning of the process. We also assume that FADs are numbered in the
order of recovering by vessel i. Namely, vessel i is located in position

(
x0i , y

0
i

)
. Thus, it

moves to FAD b1i and recover the tuna in such FAD. Next, vessel i moves to position
FAD b2i and so on.

Therefore, we make the following assumptions:

• Each vessel knows the position of all FADs to which has been assigned. Each vessel
does not know the location of the FADs assigned to other vessels.

• In the theoretical model, we assume that each vessel has a cost c per mile traveled
between FADs. This cost is paid by the firm. In our simulations, we compute c by
assuming that the average vessel speed is 15 knots. Thus, we estimate a fuel cost
of $29 US per nautical mile traveling between FADs.

• Vessels cannot know in advance the amount of tuna they will find at each FAD. We
denote by q the expected amount of tuna by FAD. We denote by qki the amount of
tuna recovered by skipper i in FAD bki . These amounts will be known only after
fishing.

In our simulations we take q = 6.1 tons for every skipper i and every FAD bki .

• Each vessel i cannot know in advance the amount of time tki for recovering the tuna
of FAD bki .

In our simulations we assume that tki is 3 hours for every vessel i and every FAD bki .

• Each skipper receives a price p by each amount of tuna fished.

In our simulations we consider several values for p.

Once vessel (skipper) i has recovered all of its FADs, the utility obtained is computed
as the amount fished multiplied by the price paid by the firm. Namely,

p

ni∑
k=1

qki

The utility of the firm is

(pf − p)
n∑
i=1

ni∑
k=1

qki − c
n∑
i=1

d (bi)
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where d (bi) is the distance traveled by vessel i for recovering all FADs in bi. Namely, the
firm pays a unit price of p to every vessel and sells the fish at the price pf . Additionally,
the firm has to pay costs associated with the travel of the vessels.

As skippers do not pay for fuel, they do not have an incentive to share their FADs
to minimize the distance traveled. Nevertheless, the firm has incentives. If the cost is
reduced (and all FADs are recovered), then the total utility of the firm will be increased.

We consider two possible mechanisms that firms can use to induce skippers to share
their FADs. We model such mechanisms as two games with incomplete information
following Aumann’s model. Additionally, we study the Bayesian Nash equilibria (BNE)
of both games, which provide predictions of the behavior of rational agents when facing
such situations.

In the Appendix, we theoretically study both mechanisms, and we formally present
the games for modeling both mechanisms. We also compute the BNE associated with
both mechanisms (Propositions 1 and 2).

For now, we present the results in a more informal way. The basic idea of both
mechanisms is the same. First, the vessels or skippers decide independently if they want
to share its FADs or not. If a vessel says no, then this vessel fishes with its FADs. For
the vessels that say yes, the firm reassigns their FADs among the cooperating. Next,
every vessel fishes in its reassigned FADs.

Mechanism 1: Reassigning FADs without compensation. The firm will pay
to the skippers according to the FADs each vessel has been assigned. Suppose that vessel
i initially had 20 FADs, decided to share its FADs, and was reassigned with 18 FADs.
The firm will pay skipper i according to the amount of fish obtained by the 18 reassigned
FADs. If vessel i is reassigned with the same or more FADs than it initially had, then
vessel i will be paid also according with the number of assigned FADs.

In Proposition 1 of the Appendix we theoretically study this mechanism. Here we
discuss the practical implications of Proposition 1. According to part (a), if each vessel
decides not to share its FADs (as in Example 2 of the Appendix), then we have a BNE,
and the firm cannot save in fuel. In other cases (as in Example 1 of the Appendix), there
could exist a different BNE, wherein some vessels share FADs and the firm saves fuel
costs.

By part (b) of Proposition 1, we realize that the utility of each skipper i in any BNE
will always be the same and coincide with the utility skipper i obtains when it does not
share FADs. This result is independent of the number of FADs, the position of the FADs,
and the information the vessels have over the position of the FADs. Thus, skipper i does
not have an incentive to share its FADs in any circumstance because skipper i cannot
improve its expected utility by sharing instead of not sharing. If skipper i shares its
FADs, it could be the case that skipper i receives more FADs than it initially had, but it
could also receive less. The average will be the same.

Our theoretical results prove that under this mechanism, skippers do not have
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incentives to share their FADs under any circumstance. This helps explain why tuna
vessels work alone or in small groups. Nevertheless, this mechanism is not the most
beneficial for the firm.

Mechanism 2: Reassigning FADs with compensation. The firm will guarantee
to skippers that share their FADs to pay, at minimum, according with the number of
FADs the vessel initially had. For example, suppose that vessel i initially had 20 FADs,
decided to share its FADs, and is reassigned with 18 FADs. The firm will pay skipper i
according to the amount obtained by vessel i would receive if it recovered 2 more FADs.
If vessel i is reassigned with the same or more FADs than it initially had, it will be paid
according to the number of reassigned FADs.

In Proposition 2 of the Appendix, we theoretically study this mechanism. Here we
discuss the practical implications of Proposition 2. According to part (a), we know that
there is a BNE when every skipper decides not to share its FADs. The same applies to
Mechanism 1. Per part (c), there is also a BNE when every skipper shares its FADs and
the firm reorganizes all the FADs optimally. Further, the utility of the firm and each
skipper under part (c) is greater than or equal to when no vessels share FADs.

Next we asked, when is the BNE of part (c) different from that of part (a)? We also
asked the extent of these differences. In Example 3 of the Appendix, both BNE are
essentially the same. Thus, from a theoretical point of view, the answer to our question
is that it depends on the characteristics of the problem. We then offered (in the next
section) a practical answer to both questions. After developing simulations based on real
data, our results showed that, in all cases studied, the BNE of part (c) was different from
the one of part (a). Additionally, both were quite different in terms of utility obtained by
the skippers and the firm. In this case, the firm clearly benefits more than the skippers.

Part (b) of Proposition 2 says the following: Suppose that skipper i decides between
sharing or not sharing its FADs. Independent of the position of its FADs or the decision
taken by other skippers, the expected utility obtained sharing its FADs is never smaller
than the expected utility obtained not sharing its FADs. This means that the Bayesian
Nash equilibria we should observe in practice is the one in which every skipper shares its
FADs. Thus, with Mechanism 2, every skipper has incentives to share its FADs, and this
mechanism is also suitable for the firm.

4 Data and results

In this section we design an experiment that, based on data from FADs movements,
assesses the theoretical propositions made in the previous chapter. It is worth recalling
that we used real-data from different tuna fishing companies. To test our model exclusively
for scientific purposes, Marine Instruments provided us with anonymous real-data from
several tuna vessels fishing in the FAO capture zone no. 57 (Eastern Indian Ocean) from
April 9 to April 23, 2017. Specifically this experiment was based on a tuna company
composed of 3 vessels (i.e., 3 skippers) with 20 FADs per vessel.
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This information was obtained randomly using the MSB software, a platform for
receiving and visualizing buoy data, from Marine Instruments. We performed 10 mea-
surements in each experiment, varying the positions of the FADs and the vessels, to
obtain representative mean values for each case study. We suppose that tuna vessels
navigate at 15 knots and, for simplicity, the expected average of tuna by FAD is 6.1 tons,
with $29 per nautical mile the cost of fuel at this speed. All these working conditions
are represented in Table 1 and were obtained from Marine’s historical records for vessels
working in this area during the last decade:

Table 1: Experiment assumptions

Description Value

Number of vessels 3
FADs per vessel 20
Vessel speed 15 knots
Fishing time 3 hours
Tons beneath each FAD 6.1
Cost per ton $1, 400
Fuel cost per mile $29
Skipper benefit 10%

It should also be noted that, for correct interpretation of the results, all skippers
have variable benefits that depend on the quantity of fish they catch. While this value
may be different from one company to another, we have supposed an average benefit of
about 10% of the total amount of tuna fished, which is based on the average tuna stock
price. Although the companies did not give us this information, they confirmed that the
supposed percentage is a reasonable value, and this percentage does not affect the theory
we want to prove. For simplicity, we paid no attention to the firm’s fixed expenditures,
such as crew costs, supplies, fishing licenses, etc.

Considering these conditions and following the same structure as in the previous
theoretical section, a total of three different scenarios were considered. The first scenario
(Table 2) describes the current situation where the skippers do not share their FADs.
In the second scenario (Table 3) the three skippers share the FADs without compen-
sation. Finally, in the last scenario (Table 4), the same situation is proposed but with
compensation for the skippers to share. Next, each of these three situations is analyzed
in detail.

In the first scenario we assumed that the skippers did not share their FADs. In these
conditions, therefore, each skipper only knows the position of their own FADs. The
results obtained are shown in Table 2, where we can observe the money earned by each
skipper (vessel) and the money earned by the firm (owner of the three tuna vessels)
within the conditions (tons per FAD, cost per ton, fuel cost, etc.) previously illustrated
in Table 1. To obtain a representative average value (Avg.), we have repeated each
simulation 10 times representing different FADs situations. It is worth recalling that we
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assume the same quantity of fish beneath of each FAD. Therefore, the expected earned
money for each skipper is the same for each simulation but it is not for the firm, because
totals also depend on how many miles the vessels navigate, and firm benefits depend not
only on the amount of tuna captured, but also on the fuel spent; the more miles traveled,
the fewer benefits for the firm.

Table 2: Current way of working: Vessels do not share their FADs
Skipper 1 Skipper 2 Skipper 3 Ship owner

1 $ 16,969 $ 16,969 $ 16,969 $ 248,267

2 $ 16,969 $ 16,969 $ 16,969 $ 247,448

3 $ 16,969 $ 16,969 $ 16,969 $ 244,741

4 $ 16,969 $ 16,969 $ 16,969 $ 255,185

5 $ 16,969 $ 16,969 $ 16,969 $ 255,032

6 $ 16,969 $ 16,969 $ 16,969 $ 256,515

7 $ 16,969 $ 16,969 $ 16,969 $ 258,642

8 $ 16,969 $ 16,969 $ 16,969 $ 255,185

9 $ 16,969 $ 16,969 $ 16,969 $ 244,166

10 $ 16,969 $ 16,969 $ 16,969 $ 251,943

Avg. $ 16,969 $ 16,969 $ 16,969 $ 251,712

In the second scenario (Table 3) we assume that the three skippers (vessels) agree to
share their FADs, so the firm makes an optimal distribution of the FADs and assigns
them in a smart way from the office to the vessels. This means that sometimes one vessel
can have 20 FADs, sometimes more and sometimes less. Table 3 shows these results, and
we can observe that skippers 1 and 2 achieve greater benefits than skipper 3 because, on
average, they had more FADs during the simulations.

The firm in this scenario would obtain important benefits because of the fuel saved by
this smart distribution of FADs, reaching 8.5% improvement compared to the previous
scenario. However, the total benefits of the skippers does not change. Skipper 1 improves
4.3%, skipper 2 improves 0.8% but skipper 3 decreases 5.1% (compared to Table 1, which
reflects current fishing methods). This results confirm the theoretical results we have
seen in the previous section. Skippers do not have not incentive to share their FADs with
other vessels because the expected benefit of a skipper when sharing their FADs, is the
same that when no sharing the FADs. Thus, as there is no expectation of improvement,
it seems very likely that the skippers would not want to take risks and continue working
only with their own FADs. Seen from the global point of view of the company (and
shareholders), however, the best scenario would involve sharing. Our empirical results
corroborate the theoretical assumptions described above and help explain why many tuna
vessels work alone. Nevertheless, this mechanism is not the more suitable for the firm.

In the third scenario the firm changes its strategy of incentives for the skippers, as
shown in Proposition 2 (see Mechanism 2: Reassigning FADs with compensation in
Section 3). In this scenario, the firm guarantees pay to vessels that share FADs at least
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Table 3: Mechanism 1: Reassigning FADs without compensation
Skipper 1 Skipper 2 Skipper 3 Ship owner

1 $ 17,818 $ 16,121 $ 16,970 $ 281,716

2 $ 17,818 1 $ 6,970 $ 16,121 $ 266,843

3 $ 19,515 $ 15,273 $ 16,121 $ 269,936

4 $ 16,970 $ 16,970 $ 16,970 $ 276,557

5 $ 17,818 $ 16,121 $ 16,970 $ 285,337

6 $ 16,970 $ 18,667 $ 15,273 $ 258,980

7 $ 17,309 $ 18,723 $ 14,877 $ 269,586

8 $ 17,164 $ 19,063 $ 14,683 $ 270,121

9 $ 19,515 $ 16,121 $ 15,273 $ 279,064

10 $ 16,121 $ 16,970 $ 17,818 $ 272,243

Avg. $ 17,702 $ 17,100 $ 16,107 $ 273,038

Diff 4.3% 0.8% -5.1% 8.5%

according to the number of FADs the vessel initially had. In other words, when a skipper
has fewer FADs assigned than the average, he or she is automatically compensated by
the firm. For example, when a skipper has 2 FADs fewer than the current situation (i.e.,
20), the company will still pay for 20 FADs, so there is not any risk for the skipper.
But, when the skipper has more FADs assigned than the average (for instance, 21), he
or she will keep them, fishing more, and the quantity of fish expected for each vessel
will be more than in the first scenario. With this policy of incentives, it seems logical
to expect the bosses to be encouraged to collaborate since everybody wins. In fact, as
was theoretically proved in Proposition 2, every skipper has incentives to share its FADs;
therefore, the Bayesian Nash equilibria we should observe in practice with real-data is
the one in which every vessel shares its FADs.

The results are shown in Table 4, where we can clearly see that each skipper enjoys
more benefits than in the first scenario where did not share. Further, the firm continues
earning more than the first scenario, although less than the second, as it was expected.
In this way, our empirical findings complement the previous theoretical section. While,
theoretically, we could only predict that it was favorable to share FADs, the simulations
performed not only confirm this but also verify that both the company and the skippers
get more benefit with this new procedure. In fact, with our data, we can also estimate
how much more they will earn on average over time. We can assure, therefore, that this
mechanism is suitable for the firm.

We used the nearest neighbor strategy for recovering FADs during the simulations.
This means that FAD distribution was based on assigning FADs closer to each tuna vessel.
This is a quick and sound distribution method commonly used by the tuna industry
at present, but it is far from being optimal. The results could be further improved if
this recovery strategy was changed to adapt to the dynamic nature of drifting FADs,
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Table 4: Mechanism 2: Reassigning FADs with compensation
Skipper 1 Skipper 2 Skipper 3 Ship owner

1 $ 17,818 $ 16,969 $ 16,969 $ 280,867

2 $ 17,818 $ 16,969 $ 16,969 $ 265,994

3 $ 19,515 $ 16,969 $ 16,969 $ 267,390

4 $ 16,969 $ 16,969 $ 16,969 $ 276,557

5 $ 17,818 $ 16,969 $ 16,969 $ 284,488

6 $ 16,969 $ 18,666 $ 16,969 $ 257,283

7 $ 17,309 $ 18,723 $ 16,969 $ 267,492

8 $ 17,163 $ 19,062 $ 16,969 $ 267,834

9 $ 19,515 $ 16,969 $ 16,969 $ 276,518

10 $ 16,969 $ 16,969 $ 17,818 $ 271,394

Avg. $ 17,786 $ 17,524 $ 17,054 $ 271,582

Diff 4.8% 3.3% 0.5% 7.9%

as is shown in Groba, Sartal, and Vázquez (2018). In this case, it was proved that the
quantity of miles traveled could be reduced by 21.4% in the case of 3 veseels and 20
FADs per vessel in comparison with the NN strategy, as we use in our approach. It not
only indicates that the firm is going to earn more due to the route optimization, but also
that fishing time will be reduced, so skippers can fish the same quantity in less time and
still gain all the associated economic and environmental implications.

5 Conclusions

Based on data from different groups of tuna vessels retrieving their FADs in the Indian
Ocean during 2017, this paper proposes a new, coordinated way of working for the
tuna fishing companies related to FAD collection. Situated within well-known game
theory, our findings reflect the value of sharing FADs. We demonstrate that, with the
correct incentives, there is a situation in which all stakeholders –company, skipper, and
environment– obtain better results. Further, global economic profits are realized for the
fleet and company, and CO2 emissions are reduced.

From a scholarly perspective, our work provides empirical evaluation using real-
data and supports and applies the adequacy of the proposed theoretical model –a non
cooperative game with incomplete information following the model of Aumann considering
Bayesian Nash equilibria– to a complex, real-world situation. We assumed two different
situations: 1) reassigning FADs without compensation and 2) reassigning FADs with
compensation. While in the first situation our results only corroborate theoretical
assumptions (and explain why tuna vessels work alone), the empirical portion of the
second situation complements the previous theoretical section. While, theoretically, we
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could only predict that it was favorable to share FADs, the simulations performed not
only allow us to confirm this and verify that both the company and the skippers get
more benefit with this new procedure. Additionally, with our data, we can also estimate
how much more they each will earn on average over time. We can assure, therefore, that
this mechanism is suitable for the firm.

As the firm will enjoy savings due to the route optimization, tuna vessels will reduce
their fishing time and fuel consumed. In addition, fuel reduction presents another
important advantage: increased storage capacity. This paper opens up, therefore, a set
of possibilities for a wide range of real-world problems.

Similarly, from a policy-maker perspective, our work addresses a new, more-efficient
way to work with increasing FAD regulations regarding the number of FADs per PS.
While, these regulations were first introduced in the Indian Ocean by the Indian Ocean
Tuna Commission (IOTC) with Resolution 17/08, it is very likely that these regulatory
restrictions will soon extend to the rest of the oceans by the ICCAT and the IATTC. It
is mandatory, therefore, for the tuna fishing industry to optimize the use of FADs. As it
seems clear that this number will be drastically reduced in the next few years, there is
no other way but to use them as efficiently as possible.

From an environmental perspective, our proposal would directly reduce the total
current CO2 emissions. This is a significant improvement, as climate change is one of the
main problems facing humanity today (Howard-Grenville, Buckle, Hoskins, & George,
2014). In addition, the development of more sustainable fishing methods using FADs
may be possible because of our research.
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A Appendix

We now introduce some well known concepts of non cooperative game theory. We refer
to Zamir (2013) for a detailed discussion of such concepts.

An Aumann model of incomplete information (Aumann (1976)) is a tuple(
I,X, (πi)i∈I , P

)
where I is the set of agents; X is the set of states of the world; for each i ∈ I, πi is a
partition of X; and P is a probability distribution over X (called common prior).

Given x ∈ X and i ∈ I we denote by πi (x) the element of πi to which x belongs to.

The interpretation is as follows. There is a possible set of states of the world (X)
and a probability distribution (P ) over X known by all agents. An element x ∈ X is
randomly selected according with P. Each agent i ∈ I has different information about
such element, which is given by πi. We assume that agent i knows that an element of
πi (x) has happened, but he/she can not distinguishes among the elements of πi (x).

The Harsanyi’s model of incomplete information (Harsanyi (1967) is more popular
than the Aumann’s model of incomplete information. In this paper we use Aumann’s
model because it fits better with the problem we are studying.

For each state of the world x ∈ X we consider the classical non-cooperative game
Γx =

(
I, (Axi )i∈I , (u

x
i )i∈I

)
played at this state. For each agent i ∈ I, Axi denotes the set

of pure actions that agent i can take when the state of the world is x. We assume that
Axi = Ax

′
i when πi (x) = πi (x′) . Besides uxi : ×i∈IAxi → R represents the utility of agent

i.

An strategy for agent i is a mapping σi assigning to each state of the world x ∈ X an
action σi (x) ∈ Axi such that σi (x) = σi (x′) when πi (x) = πi (x′) . We denote by Σi the
set of all strategies of agent i.

A Bayesian game on X is a triple
(
I, (Σi)i∈I , (ui)i∈I

)
where for each σ = (σi)i∈I and

each i ∈ N
ui (σ) =

∫
X
uxi
(
(σi (x))i∈I

)
dP

A Bayesian Nash equilibria (briefly BNE) is a tuple σ = (σi)i∈I such that for
for each i ∈ I and each σ′i ∈ Σi we have that ui (σ) ≥ ui (σ\σ′i) where σ\σ′i is the
combination of strategies where agent i plays σ′i and each agent j ∈ I\ {i} plays σj .

Intuitively, in a BNE at each stage of the world x each agent i is playing a best reply
against the strategies of the other agents. Thus, a BNE is an extension of the Nash
equilibria (Nash (1951)) to this setting.
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A.1 Mechanism 1. Reassigning FADs without compensation

We consider the Aumann model of incomplete information
(
I,X, (πi)i∈I , P

)
defined as

follows.

• I = {f, 1, ..., n} where f is the firm and i denotes vessel i for each i = 1, ..., n.

In our simulations we will take 3 vessels. Namely, n = 3.

• X is the set of possible locations of the τ =
n∑
i=1

ni FADs assigned to the vessels.

Namely X = Zτ where Z denotes the set of places where a FAD can be located.
We assume that coordinates 1 to n1 from Zτ refer to the position of the FADs
assigned to vessel 1. Coordinates n1 + 1 to n1 + n2 from Zτ refer to the position of
the FADs assigned to vessel 2 and so on. A generic element of X will be denoted
as x = (xj)

τ
j=1 .

In our simulations we take Z as the Indic Ocean. Besides each vessel will have 20
FADs (ni = 20 for all i ∈ N) and hence τ = 60.

• (πi)i∈I model the situation where each vessel only knows the position of its FADs
and the firm knows the position of all FADs.

Given i ∈ N and x, x′ ∈ X we have that πi (x) = πi (x′) if and only if the position
of the FADs assigned to vessel i in x and x′ are the same. Namely, for each

j =
i−1∑
k=1

nk + 1, ...,
i∑

k=1

nk we have that xj = x′j .

For each x ∈ X, πf (x) = {x} .

• P is a probability distribution over X. We do not consider a specific distribution
for P because our theoretical results hold for any P.

The non-cooperative game Γx =
(
I, (Axi )i∈I , (u

x
i )i∈I

)
we consider is defined for

modelling the following situation. Each vessel, independently, decides if it share its
FADs with other vessels. If a vessel says no, then such vessel remains with the same
FADs. Among the vessels that say yes, the firm reassign the FADs of such vessels among
themselves. We now formalize this idea.

• I as above.

• (Axi )i∈I . For each i ∈ N, Axi = {Y ES,NO} .
Let Nx,Y ES the set of vessels that says Y ES. Let

Bx,Y ES =
⋃

i∈Nx,Y ES

ni⋃
k=1

bki

be the set of all FADs assigned initially to vessels that said Y ES.
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Axf is the set of all possible reallocations of the FADs of Bx,Y ES among agents in

Nx,Y ES . Namely,

Axf =


(Bi)i∈Nx,Y ES : for each i ∈ Nx,Y ES , ∅ ⊂ Bi ⊂ Bx,Y ES ,⋃

i∈Nx,Y ES

Bi = Bx,Y ES and

Bi ∩Bj = ∅ for each i, j ∈ Nx,Y ES , i 6= j.


• (uxi )i∈I . Let (axi )i∈I ∈ ×i∈IA

x
i .

Let j ∈ N be a vessel that said NO. Then, the vessel continue with the same FADs,
bj . Hence its utility is uj

(
(axi )i∈I

)
= pnjq.

Let j ∈ N be a vessel that said Y ES. Then, the vessel has a new set of FADs, Bj .
Hence its utility is uj

(
(axi )i∈I

)
= p |Bj | q where |Bj | denotes the number of FADs

in Bj .

Finally, the utility of the firm is

uf
(
(axi )i∈I

)
= (pf − p)

n∑
i=1

njq − c
∑

i∈N\Nx,Y ES

d (bi)− c
∑

i∈Nx,Y ES

d (Bi)

The utility of the firm has three parts. The first one, (pf − p)
n∑
i=1

njq, corresponds

to the benefits of selling the fish. This part is independent of the actions taking by
the vessels. The second one, −c

∑
i∈N\Nx,Y ES

d (bi) , corresponds to the cost of the

fuel of the vessels that did not share its FADs. This part depends on the actions
of the vessels but not on the action of the firm. The third one, −c

∑
i∈Nx,Y ES

d (Bi) ,

corresponds to the cost of the fuel of the vessels that shared its FADs. This part
depends on the actions of the vessels and on the action of the firm.

We now make a theoretical analysis of the Bayesian game
(
I, (Σi)i∈I , (ui)i∈I

)
associ-

ated to this case.

Proposition 1. Let
(
I,X, (πi)i∈I , P

)
be the Aumann model of incomplete informa-

tion defined as above.

(a) Let σ = (σi)i∈I be such that for each i ∈ N and for each x ∈ X, σi (x) = NO.
Then, σ is a BNE of

(
I, (Σi)i∈I , (ui)i∈I

)
and for each i ∈ N, ui (σ) = pniq.

(b) Let σ = (σi)i∈I be a BNE of
(
I, (Σi)i∈I , (ui)i∈I

)
. Then, for each i ∈ N, ui (σ) =

pniq.

Proof of Proposition 1. We first note that for each i ∈ I and each σ = (σi)i∈I we
have that

ui (σ) =

∫
X
uxi
(
(σi (x))i∈I

)
dP =

∑
Xi∈πi

∫
Xi

uxi
(
(σi (x))i∈I

)
dP
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and σi (x) = σi (x′) for all x, x′ ∈ Xi.

(a) We have to prove that for each i ∈ I and each σ′i ∈ Σi, we have that ui (σ) ≥
ui (σ\σ′i) .

Let i = f. Since all vessels are saying NO, firm has nothing to do. Then, for each

σ′f ∈ Σf we have that uf (σ) = uf

(
σ\σ′f

)
.

Let i ∈ N and σ′i ∈ Σi. Thus,

ui
(
σ\σ′i

)
=
∑
Xi∈πi

∫
Xi

uxi

(
σ′i (x) , (σj (x))j∈I\{i}

)
dP.

Let Xi ∈ πi be such that σ′i (x) = NO for each x ∈ Xi. Since σi (x) = NO for each
x ∈ Xi we have that∫

Xi

uxi

(
σ′i (x) , (σj (x))j∈I\{i}

)
dP =

∫
Xi

uxi

(
(σj (x))j∈I

)
dP.

Let Xi ∈ πi be such that σ′i (x) = Y ES for each x ∈ Xi. Thus, Nx,Y ES = {i} and

Bx,Y ES =
ni⋃
k=1

bki . Hence Axf , the set of all possible reallocations of the FADs of Bx,Y ES

among agents in Nx,Y ES has a unique element, namely, to assign all the FADs of vessel i
to vessel i. Thus,∫

Xi

uxi

(
σ′i (x) , (σj (x))j∈I\{i}

)
dP =

∫
Xi

uxi

(
(σj (x))j∈I

)
dP.

Hence,

ui
(
σ\σ′i

)
=
∑
Xi∈πi

∫
Xi

uxi

(
(σj (x))j∈I

)
dP = ui (σ) .

(b) We first prove a couple of statements that will be used in the proof of this part.

Statement 1. Let σ = (σi)i∈I be a BNE of
(
I, (Σi)i∈I , (ui)i∈I

)
. Then, there exists

X ′ ⊂ X such that
∫
X′ dP = 1 and for each x ∈ X ′, σf (x) = (B∗i )i∈Nx,Y ES where

∑
i∈Nx,Y ES

d (B∗i ) = min

 ∑
i∈Nx,Y ES

d (Bi) : (Bi)i∈Nx,Y ES ∈ Bx,Y ES

 .

Proof of Statement 1. For each x ∈ X we denote σf (x) = (Bi)i∈Nx,Y ES . Besides, we
define X ′′ =

{
x ∈ X : σf (x) 6= (B∗i )i∈Nx,Y ES

}
.

Suppose that the statement does not hold. Then,
∫
X′′ dP > 0.
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We now define σ′f such that σ′f (x) = (B∗i )i∈Nx,Y ES for all x ∈ X. Then

uf
(
σ\σ′f

)
=

∫
X
uxf

(
σ′f (x) , (σj (x))j∈I\{f}

)
dP

=

∫
X\X′′

uxf

(
σ′f (x) , (σj (x))j∈I\{f}

)
dP

+

∫
X′′

uxf

(
σ′f (x) , (σj (x))j∈I\{f}

)
dP.

Since σ′f (x) = σf (x) for all x ∈ X\X ′′ we have that∫
X\X′′

uxf

(
σ′f (x) , (σj (x))j∈I\{f}

)
dP =

∫
X\X′′

uxf

(
(σj (x))j∈I

)
dP.

Besides, ∫
X′′

uxf

(
σ′f (x) , (σj (x))j∈I\{f}

)
dP

=

∫
X′′

(pf − p)
n∑
i=1

njq − c
∑

i∈N\Nx,Y ES

d (bi)− c
∑

i∈Nx,Y ES

d (B∗i )

 dP
>

∫
X′′

(pf − p)
n∑
i=1

njq − c
∑

i∈N\Nx,Y ES

d (bi)− c
∑

i∈Nx,Y ES

d (Bi)

 dP
=

∫
X′′

uxf

(
(σj (x))j∈I

)
dP.

Thus,

uf
(
σ\σ′f

)
>

∫
X\X′′

uxf

(
(σj (x))j∈I

)
dP +

∫
X′′

uxf

(
(σj (x))j∈I

)
dP

=

∫
X
uxf

(
(σj (x))j∈I

)
dP = uf (σ) ,

which contradicts that σ is a BNE. �

Statement 2. Let σ = (σi)i∈I be a BNE of
(
I, (Σi)i∈I , (ui)i∈I

)
. For each x ∈ X and

each i ∈ N such that
∫
πi(x)

dP > 0 we have that∫
x′∈πi(x)

ux
′
i

((
σi
(
x′
))
i∈I

)
dP ≥ pniq

∫
πi(x)

dP.

Proof of Statement 2. Let x ∈ X and i ∈ N such that
∫
πi(x)

dP > 0 and σi (x) = NO.
Then, vessel i receives its initial FADs and hence∫

x′∈πi(x)
ux

′
i

((
σi
(
x′
))
i∈I

)
dP =

∫
x′∈πi(x)

pniqdP = pniq

∫
πi(x)

dP.
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Let x ∈ X and i ∈ N such that
∫
πi(x)

dP > 0 and σi (x) = Y ES. Suppose not. Then,∫
x′∈πi(x)

ux
′
i

((
σi
(
x′
))
i∈I

)
dP < pniq

∫
πi(x)

dP.

Let σ′i be such that σ′i (x′) = NO when x′ ∈ πi (x) and σ′i (x′) = σi (x′) otherwise.
Now,

ui
(
σ\σ′i

)
=

∑
Xi∈πi

∫
x′∈Xi

ux
′
i

(
σ′i
(
x′
)
,
(
σj
(
x′
))
j∈I\{i}

)
dP

=
∑

Xi∈πi\πi(x)

∫
x′∈Xi

ux
′
i

(
σ′i
(
x′
)
,
(
σj
(
x′
))
j∈I\{i}

)
dP

+

∫
x′∈πi(x)

ux
′
i

(
σ′i
(
x′
)
,
(
σj
(
x′
))
j∈I\{i}

)
dP

Since σ′i (x′) = σi (x′) when x′ ∈ Xi ∈ πi\πi (x) we have that∑
Xi∈πi\πi(x)

∫
x′∈Xi

ux
′
i

(
σ′i
(
x′
)
,
(
σj
(
x′
))
j∈I\{i}

)
dP =

∑
Xi∈πi\πi(x)

∫
x′∈Xi

ux
′
i

((
σj
(
x′
))
j∈I

)
dP.

Since uxi

(
σ′i (x′) , (σj (x′))j∈I\{i}

)
= pniq when x′ ∈ πi (x) we have that∫

x′∈πi(x)
ux

′
i

(
σ′i
(
x′
)
,
(
σj
(
x′
))
j∈I\{i}

)
dP = pniq

∫
πi(x)

dP

>

∫
x′∈πi(x)

ux
′
i

((
σi
(
x′
))
i∈I

)
dP.

Thus,

ui
(
σ\σ′i

)
>

∑
Xi∈πi\πi(x)

∫
x′∈Xi

ux
′
i

((
σj
(
x′
))
j∈I

)
dP +

∫
x′∈πi(x)

ux
′
i

((
σi
(
x′
))
i∈I

)
dP

= ui (σ) ,

which contradicts that σ is a BNE. �

We now prove (b) . We know that

ui (σ) =
∑
Xi∈πi

∫
Xi

uxi
(
(σi (x))i∈I

)
dP =

∑
Xi∈πi:

∫
Xi
dP>0

∫
Xi

uxi
(
(σi (x))i∈I

)
dP

By statement 2,∑
Xi∈πi:

∫
Xi
dP>0

∫
Xi

uxi
(
(σi (x))i∈I

)
dP ≥ pniq

∑
Xi∈πi:

∫
Xi
dP>0

∫
Xi

dP.
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Since P is a probability,
∫
X dP = 1. Then,

pniq
∑

Xi∈πi:
∫
Xi
dP>0

∫
Xi

dP = pniq

∫
X
dP = pniq.

Besides,
n∑
i=1

ui (σ) =
n∑
i=1

∫
X
uxi
(
(σi (x))i∈I

)
dP =

∫
X

n∑
i=1

uxi
(
(σi (x))i∈I

)
dP

=

∫
X

 ∑
i∈N\Nx,Y ES

pniq +
∑

i∈Nx,Y ES

p |Bi| q

 dP
= pq

∫
X

 ∑
i∈N\Nx,Y ES

ni +
∑

i∈Nx,Y ES

ni

 dP
= pq

∫
X

[∑
i∈N

ni

]
dP = pq

∑
i∈N

ni

=
∑
i∈N

pniq.

Since ui (σ) ≥ pniq for each i ∈ N and
n∑
i=1

ui (σ) =
∑
i∈N

pniq we deduce that ui (σ) =

pniq for each i ∈ N.
Proposition 1 says nothing about the utility obtained by the firm. Thus, a natural

question that arises is the following: is it possible to find BNE where some vessels share
its FADs? Notice that if the answer is YES, then the firm can improve its utility by the
fuel’s savings.

Next examples show that the answer depends on P and the location of the FADs.

Example 1. Consider the case where we have two vessels (I = {f, a, b}) and each
vessels has two FADs. Besides every vessel knows the location of every FAD. Namely, P
assign probability 1 to element x =

(
b1a, b

2
a, b

1
b , b

2
b

)
and zero to the rest of elements of X.

The distances between the FADs and the vessels are the following:

distances 1 2 b1a b2a b1b
2 50

b1a 5 45

b2a 35 15 30

b1b 15 35 10 20

b2b 45 5 40 10 30

The distances are computed by assuming that vessels are located in a line. From left
to right 1 [5] b1a [10] b1b [20] b2a [10] b2b [5] 2. The distance between vessel 1 and FADs b1a is 5;
the distance between FADs b1a and b1b is 10 and so on.
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Let σ be the BNE where each vessel says NO. Then, each vessels recover its FADs.
Vessel a moves to FAD b2a (distance 5), next to FAD b2a (distance 30) and then back (35).
The total distance traveled is 70. Similarly, the distance traveled by vessel b is also 70.
Then, the utility of each vessel is 2pq and the utility of the firm is (pf − p) 4q − c140.

Let σ be such that each vessel says Y ES and the firm assign FADs b1a and b1b to vessel
a and FADs b2a and b2b to vessel b. It is easy to see that σ is a BNE. Besides the utility of
the firm is (pf − p) 4q − c60. Thus, in this BNE the firm can improve with respect to the
initial situation.

Example 2. Consider the same case as in Example 1 but now the distances between
the FADs and the vessels are the following:

distances 1 2 b1a b2a b1b
2 140

b1a 5 135

b2a 105 15 120

b1b 125 35 100 20

b2b 135 5 110 10 30

The distances are computed by assuming that vessels are located in a line. From left
to right 1 [5] b1a [100] b1b [20] b2a [10] b2b [5] 2.

In this example the unique BNE is the one where each vessel says NO. Notice that if
both vessels say Y ES then the firm assign FAD b1a to vessel a and the other FADs to
vessel b. Thus, vessel a is better saying NO than saying Y ES.

A.2 Mechanism 2. Reassigning FADs with compensation

We now introduce the theoretical model for analyzing this case. The Aumann model of
incomplete information

(
I,X, (πi)i∈I , P

)
associated to this case is the same as above.

The non-cooperative game Γx =
(
I, (Axi )i∈I , (u

x
i )i∈I

)
we consider is defined bas

follows. (Axi )i∈I is the same as in Case 1. Nevertheless (uxi )i∈I will be modified in
order to consider the compensation that firm give to vessels that share its FADs. Let
(axi )i∈I ∈ ×i∈IA

x
i .

Let j ∈ N be a vessel that said NO (namely axj = NO). Then, the vessel continue

with the same FADs, bi. Hence its utility is uj
(
(axi )i∈I

)
= pnjq. This utility is the same

as in Mechanism 1.

Let j ∈ N be a vessel that said Y ES (namely axj = Y ES). Then, the vessel has a
new set of assigned FADs, Bj . Hence its utility is

uj
(
(axi )i∈I

)
= pmax {|Bj | , nj} q

where |Bj | denotes the number of FADs in Bj . Notice that if vessel j receives at least nj
FADs, then it will be paid according with the FADs received. If vessel j receives less
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than nj , then it will be paid as if the vessel receives nj FADs. In this part appears clearly
the new incentive mechanism.

Finally, the utility of the firm uf
(
(axi )i∈I

)
is given by

(pf − p)
n∑
i=1

njq − c
∑

i∈N\Nx,Y ES

d (bi)− c
∑

i∈Nx,Y ES

d (Bi)−
∑

i∈Nx,Y ES ,|Bi|<ni

p (ni − |Bi|) q

The utility of the firm has four parts. The first one, (pf − p)
n∑
i=1

njq, the second

one, −c
∑

i∈N\Nx,Y ES

d (bi) , and the third one, −c
∑

i∈Nx,Y ES

d (Bi) , are the same as in the

previous case. In this case it appears a fourth one,

−
∑

i∈Nx,Y ES ,|Bi|<ni

p (ni − |Bi|) q,

where it appears the compensation that the firm gives to the vessels that say Y ES and
receive less FADs than initially.

We now make a theoretical analysis of the Bayesian game
(
I, (Σi)i∈I , (ui)i∈I

)
associ-

ated to this case.

Proposition 2. Let
(
I,X, (πi)i∈I , P

)
be the Aumann model of incomplete informa-

tion defined as above.

(a) Let σNO =
(
σNOi

)
i∈I be such that for each i ∈ N and for each x ∈ X, σNOi (x) =

NO. Then, σNO is a BNE of
(
I, (Σi)i∈I , (ui)i∈I

)
and for each i ∈ N, ui

(
σNO

)
= pniq.

(b) Let i ∈ N and x ∈ X. We define ax,Y ESi = Y ES and ax,NOi = NO. For each(
axj

)
j∈I
∈ ×i∈IAxi we have that

∫
x′∈πi(x)

ux
′
i

(
ax,Y ESi ,

(
axj
)
j∈I\{i}

)
dP ≥

∫
x′∈πi(x)

ux
′
i

(
ax,NOi ,

(
axj
)
j∈I\{i}

)
dP.

(c) There exists a BNE σY ES =
(
σY ESi

)
i∈I of

(
I, (Σi)i∈I , (ui)i∈I

)
where for each i ∈ N

and for each x ∈ X, σY ESi (x) = Y ES. Besides, for each i ∈ I, ui
(
σY ES

)
≥ ui

(
σNO

)
.

Proof of Proposition 2. (a) It is similar to the proof of Proposition 1 (a) .

(b) We know that for each x′ ∈ πi (x) and each
(
axj

)
j∈I
∈ ×i∈IAxi

ux
′
i

(
ax,NOi ,

(
axj
)
j∈I\{i}

)
= pniq and

ux
′
i

(
ax,Y ESi ,

(
axj
)
j∈I\{i}

)
= pmax

{
ni,
∣∣∣Bx′

i

∣∣∣} q
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where Bx′
i is the set of FADs assigned to vessel i after saying Y ES. Thus, the result

holds trivially.

(c) For each x ∈ X we take σY ESf (x) = (B∗i )i∈Nx,Y ES where

c
∑

i∈Nx,Y ES

d (B∗i ) +
∑

i∈Nx,Y ES ,|Bi|<ni

p (ni − |B∗i |) q

= min

c ∑
i∈Nx,Y ES

d (Bi) +
∑

i∈Nx,Y ES ,|Bi|<ni

p (ni − |Bi|) q : (Bi)i∈Nx,Y ES ∈ Bx,Y ES


We first prove that σY ES is a BNE. We need to prove that for each i ∈ I and each

σi ∈ Σi we have that ui
(
σY ES

)
≥ ui

(
σY ES\σi

)
.

Because of the definition of σY ESf it is clear that for any σf ∈ Σf , uf
(
σY ES

)
≥

uf
(
σY ES\σf

)
.

Let i ∈ N and σi ∈ Σi. In the proof of Proposition 1 we have seen that

ui
(
σY ES

)
=
∑
Xi∈πi

∫
Xi

uxi

((
σY ESi (x)

)
i∈I

)
dP.

Let Xi ∈ πi be such that σi (x) = Y ES when x ∈ Xi. Then, σY ESi (x) = σi (x) and
hence, ∫

Xi

uxi

((
σY ESi (x)

)
i∈I

)
dP =

∫
Xi

uxi

(
σi (x) ,

(
σY ESi (x)

)
i∈I\{i}

)
dP.

Let Xi ∈ πi be such that σi (x) = NO when x ∈ Xi. By part (b),∫
Xi

uxi

((
σY ESi (x)

)
i∈I

)
dP ≥

∫
Xi

uxi

(
σi (x) ,

(
σY ESi (x)

)
i∈I\{i}

)
dP.

Thus,

ui
(
σY ES

)
≥
∑
Xi∈πi

∫
Xi

uxi

(
σi (x) ,

(
σY ESi (x)

)
i∈I\{i}

)
dP = ui

(
σY ES\σi

)
.

We now prove that for each i ∈ I, ui
(
σY ES

)
≥ ui

(
σNO

)
. Using part (b) it is

straightforward to prove that for each i ∈ N, ui
(
σY ES

)
≥ ui

(
σNO

)
.

Since no vessel share its FADs in σNO we have that for each x ∈ X,

uxf
(
σNO

)
= (pf − p)

n∑
i=1

njq − c
∑
i∈N

d (bi)
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and hence

uf
(
σNO

)
=

∫
X
uxf
(
σNO

)
dP = (pf − p)

n∑
i=1

njq − c
∑
i∈N

d (bi) .

We know that

uf
(
σY ES

)
= (pf − p)

n∑
i=1

njq − c
∑
i∈N

d (B∗i )−
∑

i∈N,|Bi|<ni

p (ni − |B∗i |) q

where {B∗i }
n
i=1 is obtained through the minimization problem defined above.

Thus, for proving that uf
(
σY ES

)
≥ uf

(
σNO

)
is enough to prove that it exists

{Bi}ni=1 such that

c
∑
i∈N

d (Bi) +
∑

i∈N,|Bi|<ni

p (ni − |Bi|) q ≤ c
∑
i∈N

d (bi) .

If we take Bi = bi for all i = 1, ..., n we realize that the previous inequality holds. �

Next example shows that in some cases, the BNE of parts (a) and (c) could be, in a
practical way, the same. Nevertheless our simulations based on real-data will show that
both BNE could be very different.

Example 3. Consider the same case as in Example 1 but now the distances between
the FADs and the vessels are the following:

distances 1 2 b1a b2a b1b
2 120

b1a 5 115

b2a 10 110 5

b1b 110 10 105 100

b2b 115 5 105 10 5

The distances are computed by assuming that vessels are located in a line. From left
to right 1 [5] b11 [15] b21 [100] b12 [5] b22 [5] 2.

In the BNE described in part (a) each vessels recover its FADs. Then, the utility of
each vessel is 2pq and the utility of the firm is (pf − p) 4q− c40. In the BNE described in
part (c) each vessels share its FADs. Then the firm reassign all FADs. But the optimal
solution is to assign to each vessel its initial FADs. Then, every vessel recover its FADs.
Hence, the utility of each vessel is 2pq and the utility of the firm is (pf − p) 4q − c40.
Even from a theoretical point of view both equilibria are different, in a practical way,
both are the same.
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