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Integrating forecasting in metaheuristic methods to solve
dynamic routing problems: Evidence from the logistic
processes of tuna vessels
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Abstract

The multiple Traveling Salesman Problem (mTSP) is a widespread phenomenon
in real-life scenarios, and in fact it has been addressed from multiple perspectives
in recent decades. However, mTSP in dynamic circumstances entails a greater
complexity that recent approaches are still trying to grasp. Beyond time windows,
capacity and other parameters that characterize the dynamics of each scenario, moving
targets is one of the underdeveloped issues in the field of mTSP. The approach of
this paper harnesses a simple prediction method to prove that integrating forecasting
within a metaheuristic evolutionary-based method, such as genetic algorithms, can
yield better results in a dynamic scenario than their simple non-predictive version.
Real data is used from the retrieval of Fish Aggregating Devices (FADs) by tuna
vessels in the Indian Ocean. Based on historical data registered by the GPS system
of the buoys attached to the devices, their trajectory is firstly forecast to feed
subsequently the functioning of a genetic algorithm that searches for the optimal
route of tuna vessels in terms of total distance traveled. Thus, although valid for
static cases and for the Vehicle Routing Problem (VRP), the main contribution of
this method over existing literature lies in its application as a global search method
to solve the multiple TSP with moving targets in many dynamic real-life optimization
problems.
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1 Introduction

This paper addresses the synergies in combining a predictive technique with a meta-
heuristic evolutionary-based method to solve the multiple Traveling Salesman Problem
(mTSP) with moving targets (mTSP-MT). The mTSP-MT is the generalization of the
well-known Traveling Salesman Problem (TSP). It deals with multiple salesmen, and
targets (e.g., customers or objects) are not fixed. As in any TSP, however, the aim is to
minimize the total distance traveled by all salesmen.

The mTSP-MT is therefore more suitable than the ordinary TSP for a wider range
of real-world problems. In fact, this is the method used, for example, in the defense
sector to protect an airport or a security zone from mobile intruders (raiders, animals,
vehicles, etc.), or in the logistics sector to supply a fleet of boats or mobile ground
units (Stieber & Fugenschuh, 2017} [Stieber, Flgenschuh, & Yuan, 2015)). It can also be
applied to the Vehicle Routing Problem (VRP) with multiple vehicles, time windows or
capacity restrictions (Bae & Chung, |2017; |Sundar, Venkatachalam, & Rathinaml [2017)).
New potential uses are also emerging every day in mobility and delivery services (e.g.,
delivery services, real-time mobility requirements, drones scheduling and collaboration,
etc.) conducted by companies such as Uber and Amazon (M. B. Menezes, Ketzenberg:
Oliva, & Metters, |2015]).

Whereas the diverse perspectives and problem-solving methods have helped practition-
ers and scholars to address a multitude of TSPs, including mTSPs in various industries
(M. B. Menezes et all 2015), the literature on mTSP-MT is still scarce. This is possibly
due to the greater complexity of this type of problems compared to conventional TSP
approximations, which may also explain why ad hoc experiments with many restrictions
(small distances, planned routes, fixed starting-points, etc.) have often ended with few
or not applicable solutions for real-life problems. For example, C.-H. Liul (2013)) and
Jiang, Sarker, and Abbass| (2005) proposed various solutions for the mTSP-MT problem
by narrowing the scope of analysis to one dimension and limiting the working speed.
Similarly, other studies have restricted the positions of the salesmen (e.g., by having
them start at the same point, located in the middle of the area) or the possible targets’
movements (e.g., by forcing customers to move in a structured path) (M. B. Menezes et al.,
2015; [Stieber & Fiigenschuh, 2017)). In addition, regarding the calculation methodology,
the most recent approaches have worked on a real-time basis and have been recalculated
to find the changes between nodes (Hajjam, Créput, & Koukam), [2013; |Zhou, Kang, &
Yanl, [2003). However, they have not anticipated the targets’ future movement, so the
optimal solutions appear only when the changes are communicated and the algorithms
have been recalculated.

Against this background, the paper addresses the problem of moving targets by
combining a predictive technique (Newton’s movement equation) with a genetic algorithm
(GA). This new approach, which could be named genetic algorithm based in multiple-
trajectory prediction (GAMTP), yields a generic solution that not only suits dynamic
and static scenarios, but it also applicable to any real-world problem with multiple



travelers and mobile targets. GAMTP thus combines prediction and GA in a single
method to reach a better global optimization solution than when GAs alone used without
internalizing prediction.

Since the objective of this work is to prove that integrating forecasting within a
metaheuristic method (e.g., genetic algorithms) better results are achieved than in the
simple non-predictive version; we chose Newton’s movement equation as our predictive
technique over other techniques because it offers a quick, short-term prediction even when
provided with very little information (Groba, Sartal, & Vazquez,[2015). Analogously, GAs
were chosen as metaheuristic method for three reasons: (1) they are evolutionary, which
is mandatory for the algorithm implementation; (2) they show fundamental properties in
terms of robustness and statistical convergence; and (3) they can reach a solution within
an acceptable computational time (Jih & Hsu, [2004).

Data come from different group of tuna vessels retrieving their fish aggregating devices
(FADs) in the Indian Ocean during April in 2017. FADs drift in the sea and provide
an artificial substrate for attaching organism such as algae and invertebrates. This
phenomenon probably stimulates a food chain that attracts different type of fish. Tuna
also tends to gather beneath them. All FADs are attached to a buoy with a Global
Positioning System (GPS) that transmits its coordinates every 12 hours. The people
steering the vessels, which work in groups, need to design their routes to recover the
constantly moving FADs in order to minimize the total distance traveled. We compare our
results with both the most commonly used method, the nearest neighbor (NN) strategy,
and a classic mTSP approach based on GA (i.e., without prediction) (Bjarnadottir} [2004).

The paper is organized as follows. The next section provides a review of the literature.
Sections [3] and [] describe, respectively, the data and methodology. Section [f] introduces
the model and presents the experimental design. Section [6] discusses results and, finally,
Section [7] concludes by highlighting the paper’s main contributions and its implications.

2 Literature Review

TSP is a well-known of Combinatorial Optimization (CO) problems that is NP-hard
(Garey & Johnson, [1983), and in which, assuming that P # NP, no polynomial time
algorithm exists (Karp, |1972).

An extension of TSP involves more than one salesman (mTSP), and assumes that each
city must be visited exactly once and by only one salesman (Bektas, 2006a; [Venkatesh &
Singhl, 2015). Thus, given a start-and-end point (a depot), a set of n cities to be visited
by one salesman, and m salesmen (where n > m the optimal), then the mTSP consists of
finding routes for all m salesmen such that the cost of visiting all cities is minimized. The
cost can be defined in terms of distance, time, or other criteria. Thus, although mTSP is
NP-hard like TSP but entails a more complicated problem because cities must be assigned
firstly to each salesman, and then the optimum order is subsequently determined for each
salesman. Two main versions of the mTSP can be defined based on the number of depots.



In the first version all m salesmen start and end at one depot. In the second version
every salesman begins and ends at a different depot. We address the second variant,
which represents a more generalized situation that aims at minimizing the total distance
the salesmen travel (i.e., the total length of all routes). This approach reflects the strand
of literature dealing with multiple Traveling Salesman Problem (Bektas|, 2006b).

Furthermore, the solution shows an additional trait: targets are not fixed and can
vary their positions over time. This variant is known as mTSP with moving targets
(mTSP-MT), which is a dynamic generalization of the mTSP that makes the problem
more suitable to a wider range of real-world situations in various industries. In fact,
many mTSP-MT applications exist, for example, in supply logistics (Stieber et al.,
2015)), robotic patrolling (Pushkarini Agharkar & Bullo|, |2015)), scheduling and routing
(e.g., bank-crew scheduling, workload balancing, and school-bus routing), as well as in
the defense sector (e.g., the multiple-weapons-to-multiple-targets assignment problem)
(Stieber & Fugenschuhl 2017). On a broad perspective, one of the fields that could
highly benefit from this type of analysis in the future is the transportation and delivery
service (including unmanned aerial vehicle services) leaded by companies such as Uber,
Amazon and others (Agatz, Bouman, & Schmidt, [2016} Dorling, Heinrichs, Messier, &
Magierowski, [2017)).

Curiously enough, however, there are relatively few approaches to solve mTSP-MTs.
Again, this is possibly due to the greater complexity inherent to the dynamics of mTSP-
MT in comparison with traditional TSP (Garcia-Najera & Bullinaria, 2011; Hajjam et al.l
2013) or the simpler moving-target TSP (e.g. a supply ship that resupplies patrol boats
as they work, a fishing boat collecting its catch at sea, or an airplane that must intercept
a number of mobile ground units) (Groba et al. |2015; [Helbing & Tilch, [1998). There are
also variants of the TSP-MT (including one with resupply) in which the salesmen must
return to the depot after intercepting each target (Jiang et al., [2005} |Jindal & Kumar,
2011} |L. Liu, Wang, & Yangj, 2009).

Whereas this specific literature has helped researchers to explore the TSP-MT, it has
proceeded so far with a high number of restrictions in order to reach a feasible result
(Blum & Roli, 2003bj [Helvig, Robins, & Zelikovsky, 2003). The cost of this strategy,
nevertheless, is that they often end up with few or not applicable real-world solutions.
For instance, |Jiang et al. (2005) described a solution approach based on GA with a fixed
number of cities in which the target moved at a constant velocity, which in fact is a very
common assumption in this area. The same speed restriction has been considered in
moving-target TSP situations (Helbing & Tilchl [1998; Helvig et al.l [2003). Similarly,
other studies have restricted the salesmen’s position (e.g., by requiring that they start at
the same point in the middle of the area) or the possible targets’ movements (e.g., by
having the customers only move in structured paths) (T. Menezes, Tedesco, & Ramalho|
20006; Stieber et al., 2015). In the same way, |Jindal and Kumar (2011)) assumed all targets
started from their starting position, were only in one dimension, and moved with constant
velocity. In general terms, therefore, this literature shows that the available research
can hardly solve practical problems; rather, it is mainly focused on providing structure



and analyzing variants of the TSP that answer specific questions in made-to-measure
approximations of reality.

Similar arguments hold for VRP (Braekers, Ramaekers, & Van Nieuwenhuysel 2016;
Toth & Vigo, 2014), which could be considered as a generalization of mTSP with particular
applications to transport and logistic (Montoya-Torres, Franco, Isaza, Jiménez, & Herazo-
Padillal [2015)). The main difference between the classic moving TSP and the moving
VRP is that the VRP can include additional restrictions beyond distance, such as added
vehicle capacity, time constraint, a known non-negative demand for each depot, and a
non-negative cost for each route (Eksioglu, Vural, & Reisman, 2009). Nevertheless, just
as it happens with mTSP, research on VRP with moving targets is still underdeveloped.
The existing literature focuses on Unmanned Aerial Vehicles (UAVs) (including combat
UAVs), surveillance missions, and military needs, but none of these studies offers a
generic solution with no restrictions (Geng, Zhang, Wang, Fuh, & Teo, [2014}; Shetty,
Sudit, & Nagi, [2008; |Shima & Schumacher, [2005). Thus, although our research hinges
on mTSP-MT, it can also contribute to solve VRP problems (Cattaruzza, Absi, Feillet,
& Gonzalez-Feliu, 2017)).

Summing up, there is a gap in the literature on mTSP and VRP with regard
to dynamic scenarios. Research so far has worked with basic settings and simplified
parameters that not only lead to a continuous recalculation of the solution, but make this
very same solution of limited application to real-life situations. Our proposal, however,
addresses simultaneously three key issues that characterize any real-world situation: (1)
multiple targets for (2) multiple salesmen and (3) in dynamic scenarios. This makes it
a generalized solution for static and dynamic scenarios of mTSP and VRP, and opens
multiple real-world applications in many scientific and business fields, from medicine or
physics to production and logistics.

3 Data

3.1 Introduction: FAD recovery for tuna vessels

The global tuna fishery is one of the largest in the world. Aggregate catches of tuna and
associated species, including swordfish and other billfishes, reached a record level of 6.6
million tons in 2010 (Food and Agriculture Organization of the United nations, FAO,
2012). The most widely used and fastest-growing fishing gear for targeting tuna is the
purse seine. Since the 1950s, purse-seining vessels have benefited from the adoption of
power blocks, increases in fish-holding capacity and freezing technology, improvements in
tuna-locating techniques (e.g., helicopters, bird sonar, GPS, and most recently, UAVs),
and the use of FADs (Miyake, Guillotreau, Sun, & Ishimura, [2010).

FADs are human-made structures that facilitate the attraction and aggregation of
ocean-going pelagic fish such as tuna (Rajeswari, |2009)), so fishermen have traditionally
seeded them throughout the oceans to make their job more efficient. Still today, most
FADs are handcrafted. This is a relevant issue because this specific trait make FADs



drift on diverse courses and at different speeds. Furthermore, courses and speeds change
with time because they depend on the sea currents and on superficial wind. For instance,
currents beneath FADs move in a range from 0.2 knotd!] to 2 knots.

Each FAD is tied to a satellite buoy that sends information to the seiners from the
FAD’s on GPS position, battery level and water temperature. Simultaneously, most of
the buoys are also equipped with echo sounders that transmit information about the
aggregated biomass beneath them (Castro, Santiago, & Santana-Ortegal, 2001)). Vessels
receive messages on all these parameters from the buoys at least twice a day via real-time
satellite communication systems, such as Argos, Inmarsat, Orbcomm or Iridium (Moreno,
Dagorn, Sancho, & Itano, [2007)). Seiners can thus track FADs and the biomass beneath
them in real time.

Information and communication technologies have thus expanded significantly the
number of purse seiners using FADs during the last 15 years (Hallier & Gaertner}, 2008)).
Some estimates suggest there are around 120,000 FADs deployed in the oceans. It is
not surprising, consequently, that the use of FADs has been restricted in recent years to
control fishing activity and to maintain better stocks of fishing resources. Organizations
such as the Indian Ocean Tuna Commission apply normative rules to limit the quantity
of FADs that each vessel can handle. For this and other reasons, each tuna vessel may
share its FADs information among groups of two to five vessels, depending on the size
of the company. A single vessel, on the other hand, can handle as many as hundreds of
FADs.

Once the basic organization of the industry has been presented, it is worth noting
that fuel consumption has been shown to be a major contributor to the operating costs
of tuna fishing vessels, typically representing between 30 and 75% of total operating costs
(Miyake et al., 2010). Vessels that fish tuna with purse seine have an average fuel-use
intensity, weighted by landings, of 368 L/t (Parker, Vazquez-Rowe, & Tyedmers, 2015).
Given a moment t, therefore, the challenge for tuna vessels is to figure out the best
route for each vessel to maximize fishing and minimize travel. There are no restrictions
regarding where the vessels are at time ¢ or where they have to finish their tours. Under
these circumstances, the majority of tuna vessels follow the Nearest Neighbour (NN)
strategy, which is basically easy to implement. However, when the number of FADs to
recover is greater than one, the constant movement of FADs make the NN method less
useful.

Figure |1 represents the problem that the vessels face. Many FADs are drifting in the
ocean, and some vessels that share FAD information need to plan their recovery. The
FAD current position is represented in black; the white part reflects the drift in the last
days. We can also observe the current positions of three vessels (red, yellow and green
symbols) at time t. Hence, the figure presents the difficult problem that tuna vessels face
when designing a common recollection strategy. If the high fuel consumption of tuna
vessels is considered, the practical side of the challenge becomes probably more clear.

!The knot is a unit of speed equal to one nautical mile per hour, exactly 1.852 km/h



Figure 1: Drifting FADs and three vessels in the Indian Ocean.

Table 1: Mathematical symbols used.

Symbol Description

number of cities or FADs

n
m number of salesmen or vessels
t time
r number of predictions. Evolution of time ¢
! position of FAD 7 at time ¢
fr estimated position of FAD ¢ at time r
v; initial position of vessel ¢
S; speed of vessel i
zi number of objects (FADs) that salesman (vessel) i has to recover
20 index of the initial FAD that a vessel has to pick up

2f index of the final FAD that a vessel has to pick up

The mathematical notations used in the article in Table|l| can help readers understand
the proposed solution.
3.2 Data on buoys and vessels
3.2.1 FADs input

Our scenario is composed of n drifting objects (FADs), which are labeled f;: (f1, f2,-- ., fn)-
Since we know their last transmitted coordinates as well as their last h positions, the
input is an n x (h + 1) matrix:



t—1 t—2 t—h
fi

1 1 . 1
ft t—1 t—2 t—h
2

9 9 9

O e
where the first column comprises all the objects at the current time ¢; the second column
comprises all the objects at ¢ — 1, and so on and so forth throughout the matrix until the
last column, which comprises the objects at ¢ — h. Each object or FAD f! is composed of
two coordinates (latitude and longitude), which allows to represent the position of the
FAD in the map: f! = (latitude!,longitudel). The variable h can be different for each
FAD, and it depends on when it was released into the sea. In this case, having the last
three positions of each FAD is enough (i.e., t, t — 1 and t — 2), so the FADs input matrix
is as follows:

t t—1 t—2
fl 1 1

fo f0 077
3.2.2 Vessels and fishing-information input

Given m vessels, the following inputs are needed:

e Initial position: v; = (Viat, Vion ), Where vy # vy # ... # Upy.

e Average speed (s;), in knots, when traveling from one object to the next. For
simplicity, we use the same s; for all vessels, but this value could be different in
each case.

e Fishing time (FT) by object, with two possibilities:
— The fishing time is the same for all objects: F'I1 = F1s = ... = FT,.
— The fishing time can be different for each object: FT1 # F1s # ... # FT,.

The fishing time could also be vessel-dependent instead of FAD dependent, using the
same fishing time for all vessels (FT} = F1y = ... = FT,,) or a different fishing time for
each vessel (FT) # FTy # ... # FT,,). For the sake of simplicity, our solution uses the
same fishing time for all FADs.

4 Methodology

Based on historical data provided by GPS buoys tied to FADs, the paper proposes a
new approach that combines a metaheuristic method with a predictive technique. We



first estimate the trajectories of FADs and then run a genetic algorithm to determine
the best possible route considering the FADs future locations. These steps are explained
separately below in different subsections. The last one describes the final solution, which
implements the GA with a multiple-trajectory prediction.

4.1 The predictive technique: estimating FADs future position

Once the information inputs are available, the next step is to predict the next position of
each FAD. This challenge could be met with several methods that simulate and predict
current movements in the sea (Ozgékmen, Griffa, Mariano, & Piterbarg, |2000); however,
most of them use complex mathematical models based on data that are difficult to
obtain for a tuna vessel. On the one hand, FADs are hand-made objects, often built by
fishermen themselves with a bamboo framework (about 3 x 1.5m). Their manufacture
therefore introduces a significant variability that makes the mathematical modeling
of their movement very complex. On the other hand, underwater nets are commonly
attached underneath these FADs. The length of these nets has progressively increased and
can reach today a depth of 50 m in the Eastern Pacific (Fonteneau & Pianet|, 2000). In
any case, no two FADs can be assumed to drift identically under the same environmental
conditions, which makes the modeling to predict future positions based on standard
Lagrangian buoys a futile exercise.

Under these circumstances, a feasible alternative that needs little information and
computational power is Newton’s motion equation. It is thus used here to predict the
future position of each FAD, because the last three positions of each object would be
enough to obtain a rather accurate prediction in the short-term. In fact, the equation
effectiveness decreases with time because the error has a cumulative effect. As soon as
the buoys transmit their subsequent positions, however, the algorithm can update the
last position and can be executed again to predict the best route. So if the prediction
for a specific FAD is not accurate enough to predict the best set of routes, the solution
can be updated when the next message is received, therefore showing a better optimal
route if one exists. It is in this sense worth noting that the goal here is to predict where
FADs will be in the near future (not only its next position, but many future positions).
Newton’s motion equation is thus applied between an initial point and a current or final
point:

el = Yo + 0t + a A7, (1)
where
e y; is the position at the end of the interval (displacement).
e v, is the velocity at the end of the interval ¢.
e A, is the time interval between the initial and current states.

e ; is the acceleration at time t.



The variable t is considered discrete. Knowing the position of a FAD requires that
the attached buoy transmits its coordinates through satellite communication. Since this
is costly, the number of transmissions of each buoy is limited normally to twice a day.
With this information, in order to calculate the future positions of an specific FAD (f;) at
time t +x : x € {1,...,r} we only need its last three positions at time ¢,¢ — 1, and ¢t — 2.

A 1
fie1 = [t T veAp + iatA?

. . X 1
frao = fie1 + 01 + iat—&-lAtQ

. . 1
A . 2
Jeor = frar—1 + V1 8¢ + iat—&—r—lAt

It is important to note that previous predictions are used to calculate new prediction
values, so it is easy to understand that results worsen as this simple approach makes
more predictions. Long term predictions would accordingly need a different prediction
method indeed.

4.2 Algorithm design

mTSP is a class of NP-hard Combinatorial Optimization (CO) problem. Complete
algorithms are guaranteed to find every finite size instance of a CO problem, but might
need exponential computation time in the worst-case scenario. Approximate methods,
by constrast, do not ensure optimal solutions but alternatively offer good solutions in a
significantly reduced amount of time (Blum & Rolil, 2003a)).

In the last 20 years, a new kind of approximate algorithms has emerged that basically
tries to combine basic heuristic methods in higher level frameworks aimed at efficiently
and effectively exploring a search space. These methods are nowadays commonly called
metaheuristics, and refer to an iterative generation process that guides a subordinate
heuristic by combining different concepts for exploring and exploiting the search space.
Furthermore, learning strategies are used to structure information in order to find
efficiently near-optimal solutions (Osman & Laporte, [1996)).

There are many heuristic methods to solve optimization problems like mTSP. Some
examples include Ant Colony Optimization algorithms (Kuo & Zulvial [2017; [Mavrovouni-
otis & Yang, [2013)), Particle Swarm Optimization algorithms (Du & Lil 2008; [Lynn &
Suganthan) 2017), Simulated Annealing (Song, Lee, & Leel 2003) or Artificial Neural
Networks (Yegnanarayana, [2009). Evolutionary algorithms (EA) are also a particular
type of metaheuristic methods that are inspired by natural, self-organized systems and
biological evolution. Examples of these algorithms include Genetic Algorithms (Deng!
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Liu, & Zhou, 2015} |Li, Shao, Zuo, & Huangj, 2017)) or Artificial Immune Systems (Alonso.
Oliveira, & de Souzal 2015; Banerjee, [2017), which -as any EA- are flexible in the sense
that they can be adapted to changing environments by exploiting information from
earlier moves. EAs are therefore especially suitable for optimization problems in dynamic
environments such as the ones studied here (H.-f. Wang, Wang, & Yang}, 2007; [Zhou et
al., [2003). Furthermore, the selected algorithm must be evolutionary for the following
reasons (Zhou et al.l 2003]):

e EAs employ population policy and each individual in the population is an alternative
solution for a dynamic TSP.

e The population policy allows individuals to hold diverse information. Population
diversity has been proved to be a very important factor for species’ existence in
changing environments. By easily integrating some diversity-preserving techniques,
individuals are also enabled in the algorithm to quickly fit the dynamic environments.

Within this context, GAs can be viewed as an evolutionary process whereby a
population of solutions evolves over a sequence of generations to achieve a near-optimal
solution. They can therefore be defined as computer programs that evolve in ways that
resemble natural selection, solving complex problems that even their creators do not
neccesarily have to understand completely (Holland, [1992)). They were first introduced
by [Holland| (1975|) to address optimization problems using techniques inspired by natural
evolution (Winter, Periaux, Galan, & Cuesta, [1996), and this idea has led to many
theoretical developments over the last 40 years (Reinelt, 1994} |[Smith & Smith) [2002)).
In fact, GAs represent one of the most consolidated approaches to TSP (Potvinl 1996}
Razali, Geraghty, et al., 2011)), based on the following components (Srinivas & Patnaik,
1994)):

e A genetic representation for the feasible solutions to the optimization problem
e A population of encoded solutions

e A fitness function that evaluates the optimality of each solution

e Generic operators that produce a new population from the existing population

e Control parameters

A population of solutions is maintained and a reproductive process allows parent
solutions to be selected from the population. A crossover operator recombines portions
from parent solutions to produce offspring, whereas a mutation operator maintains genetic
diversity among solutions, preventing the GA to converge to a local minimum.

After using crossover and mutation on the initial population, the resulting offspring
solutions exhibit some of the characteristics of each parent. The population components
are then evaluated based on a given fitness function (in this case, the total distance

11



traveled). Analogously to biological processes, the offspring with relatively good fitness
levels are more likely to survive and reproduce, with the expectation that fitness levels
throughout the population will improve as it evolves. Each solution is therefore composed
of an array of numbers in which each number represents one of the targets in the route
(the genes).

The potential of genetic algorithms (GAs) can be easily perceived in the wide
use among scholars in such fields as Control engineering (Thomas & Poongodi, [2009),
Economics (Chiang} 2005), Medicine (Kosakovsky Pond, Posada, Gravenor, Woelk, &
Frost, 2006)), Mechanical engineering (Bernardino, Barbosa, & Lemonge, 2007)), etc. In
the case of route optimization, GAs have several applications such as ship routing with
time deadlines (Karlaftis, Kepaptsoglou, & Sambracos| 2009), vehicle routing with time
windows (Baker & Ayechew), 2003} Garcia-Najera & Bullinarial 2011; X. Wang & Regan,
2002), and VRP with loading constraints (Ruan, Zhang, Miao, & Shen, [2013]). Although
GAs are thus present in many route optimization problems, however, the TSP with
dynamic targets is still an underdeveloped issue where GAs have hardly arrived.

GAs can nevertheless make an important contribution also in dynamic scenarios. To

be sure, their near-optimal solution to a typical TSP problem is necessarily different
from the one required when targets move. As explained above, however, GAs show an
evolutionary behavior that allows to converge relatively fast towards a robust solution
(Bjarnadottir} 2004; |Jih & Hsul, 2004)). Coherently, the GA used here can be fed with the
trajectory prediction of FADs in order to identify the best route that each vessel within
the fleet must follow.
In this paper, the specific properties of the GA reflected the need to minimize the
distance that the vessels traveled throughout the recovering process. We summarize
these properties below and, in the following subsections, provide a brief report on the
algorithm design:

e Population size: 1,200.
e Natural-selection mechanism: tournament selection.
e Tournament size: 1,200 individuals selected in couples.

e Crossover type: two-part chromosome approach with p = 0.8.

e Mutation type: simple mutation between two elements with p = 0.2.
e Fitness: total distance traveled by all the vessels.
e Stopping criteria: 3,000 iterations with no any fitness improvement.

4.2.1 Solution encoding

Each solution of the mTSP is a vector divided into two parts:

(fr, foree s Sl 21,22, 2m) (2)
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The first part of the vector (fi, f2,..., fn) represents all the targets (FADs) that must
be visited, and the second part (z1,29,...,2,) shows how many targets each vessel
must visit. Thus, n is the quantity of FADs to recover, and m is the number of vessels
that need to pick up those n objects. Note that z1 + 29 + ...+ z,, = n. Each FAD,
therefore, will be a point on the route and will be represented by a number. For instance,
(9,4,7,3,5,1,2,6,8 | 3,4,2) is a possible solution for a scenario with nine FADs and
three vessels. This solution vector means that the first vessel has to recover three objects,
[9,4, 7]; the second vessel has to gather four objects, [3,5,1,2]; and the third vessel has
to collect two objects, [6, 8].

4.2.2 Initialization

The initial population is chosen randomly with the aim of covering the entire search
space. A random set of 1,200 initial solutions has been set, which covers the problem
perfectly (Yang, 1997). The fitness of each solution is measured as the total distance
that the vessels travel to recover all the FADs.

The same method used by |Carter and Ragsdale (2006) is employed here to generate
the initial population. The first part of each chromosome is a randomly generated
permutation of n cities. The greedy solutions are subsequently generated by examining
the present location of each (vessel) and then calculating the unassigned city (FAD) that
is closest to each salesman. Once a city is assigned to the closest salesman, the process
continues until all cities are assigned to a salesman. This gives the GA a good starting
point in the search space and improves the final results.

Additionally, as the sum of the positive integers in the second part of the chromosome
must equal n, the m gene values (z;) for the second part of the chromosome is generated
as a discrete uniform distribution of random numbers between 1 and n — Z;;ll xy, for
i =1 to m (i.e., the maximum value for each successive gene value is based on n and the
sum of the previous values). These values are then randomly assigned to the genes in the
second part of the chromosome.

4.2.3 Prediction

Using the inputs of n drifting objects with known values for the current location and
previous two positions, the r future positions for each object are estimated through
Newton’s motion equation. At first, this prediction is performed only once. The value of
r will depend of the number of targets n and vessels m. As n increases, the vessels will
need more time to recover the objects, so r typically grows as n grows, and decreases
when m grows. As the vessels’ speed (s;) grows, r becomes smaller. There must be a
balance between n, m, s;, and the number of future predictions (r) that we can calculate.
If there were more predicted positions than the problem requires, the algorithm will
only use the future positions that it really needs; however, » must be large enough to
determine the solution.
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4.2.4 Fitness

The fitness measure is the total number of miles traveled by all the vessels; i.e., the total
travel distance.

4.2.5 Selection

The tournament selection method of individuals is based on their performance. With an
initial random set of 600 pairs, the couple-tournament is used for the mating selection, so
each pair competes with the others. The 600 winners of each tournament are selected to
be the parent in the next generation (or offspring). This selection pressure allows the GA
to improve the population fitness through successive generations. The algorithm needs
probability values for the crossover and mutation in order to do so. Once the crossover
and selection are made the offspring size will be again 1,200 individuals.

4.2.6 Crossover

In the crossover method, each offspring inherits characteristics from its parents. Crossover
causes a structured, yet randomized exchange of genetic material between solutions, with
the possibility that ‘good’ solutions can generate ‘better’ ones (Srinivas & Patnaik, [1994)).
For the mTSP, the crossover approach is different from the TSP due to the complexity of
the problem, i.e., different vehicles recovering different objects. A two-part chromosome
is commonly used, therefore, instead of a one-part chromosome.

The two-part chromosome technique, as the name implies, divides the chromosome into
two parts. The first part with length n represents a permutation of n cities, whereas
the second part with length m reflects the number of cities assigned to each salesman.
The crossover operation for the two-part chromosome is separated into two independent
operations. The first operation uses an ordered crossover operator, while the second
operation uses an asexual crossover operator to ensure that the second part of the
chromosome remains feasible.

The solution implemented here uses a two-part chromosome approach that improves
the GA’s search performance when solving the multiple TSP (Shuai, Bradley, Shoudong:
& Dikai, 2013). This method minimizes the size of the search space by reducing the
redundant candidate solutions. The parameters of the GA were tested initially with the
same probability (0.5-0.5); then the values were changed up and down by 0.1 until an
optimum was reached in 0.8 and 0.2, respectively, for crossover and mutation. Lower
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crossover probabilities and higher values of mutation reduced the exploration capability
of the GA and increased the amount of disruption to each gene in the solution. Similarly,
higher crossover probabilities and lower mutation probabilities eliminate good candidates
because of too much exploration and too much gene disruption, thus yielding worse
results.

4.2.7 Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of
genetic algorithm chromosomes to the next one. These random changes will gradually add
some new characteristics to the population that could not be supplied by the crossover,
preventing the algorithm to avoid a local minimum when the population is too similar.
The mutation probability, as noted above, has been set at 0.2.

There are many mutation types; in the simplest form, only one chromosome is mutated (bit
string mutation), but there are more complex approximations as well (Flip bit, Boundary,
Gaussian, etc.). This paper uses the simplest type, swap mutation, to randomly exchange
two elements of the route. Notice, however, that this mutation is only applied for the
first part of the chromosome; the second part continues without changing.

4.2.8 Execution of the algorithm and stopping criterion

The execution of the proposed algorithm must be carried out in a centralized way because
the final, unique solution must be transmitted to all m vessels at the same time. The
vessels’ operators can all therefore know exactly which FADs have been assigned to
each vessel. The algorithm cannot be executed on board because this is a metaheuristic
approach, so the final solution could yield a different solution for each vessel. For this
reason, the algorithm should be executed only once, either in the main office or on just
one of the vessels. Results would be subsequently communicated to all vessels.

The execution of the algorithm is halted when, after 3,000 loops, there is no fitness
improvement. This number of maximum loops has been set so that the execution time of
the GAMTP solution can vary from 1 to 10 min, depending on the number of FADs and
vessels (n and m). This time constraint actually represents a fairly quick response since
the company will organize the vessels’ work for a week or more each time.

The algorithm has been developed in C# Programming Language and integrated into
the MSB software, which is used by tuna vessels to receive the information from their
buoys. It has been developed in a decoupled way where both, the collecting method (NN,
GA or GAMTP) and the GAMTP parameters, can be easily changed. The solution might
be useful for any type of tuna fishing company, regardless of the number of vessels or
FADs. Furthermore, the algorithm can be specialized for specific tasks such as prioritizing
the recovery of particular targets, working with time windows or finding the optimal speed
of each vessel, which saves even more fuel. Concerning the computational experiments,
they were carried out on a Windows 10 operating system with an Intel Core i7 running
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at 2.7 GHz and 16 GB of RAM.

5 Implementing the GA with a multiple-trajectory predic-
tion

Based on the inputs and techniques described, this subsection explains how an evolutionary
algorithm can be combined with a prediction technique (in this case, Newton’s motion
equation) to improve results when targets are constantly moving.

The addition of prediction is a bold departure from the initial state of the genetic
algorithm, which evolves through multiple intermediate solutions to reach a final route
for each of the vessels. Accordingly, the method described here, GAMTP (Genetic
Algorithm based in Multiple-Trajectory Prediction), evolves from scratch to provide a
set, of routes based on the FADs predicted movement, which feeds the GA through the
fitness-calculation process.

Algorithm [I| shows the pseudo-code of our GAMTP solution, and Algorithm [2] details
how the fitness is calculated for each solution.
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Data: n FADs positions (f;) at time, ¢,¢t — 1, and ¢ — 2:
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Data: m vessels positions: (v1,v2,...,Un)
Data: Vessels speed (s) and fishing time for each FAD
Result: Final route for each vessel
for i < 1 ton do
using input (f}, fitfl, fff2) — calculation of the r future positions of each
target f;: (ffH, ff”, ey ff’”);
end
GA initialization: k first solutions calculated;
for i<+ 1 tok do
| fitness(7)
end
while Stopping criteria not reached do
parent selection;
new offspring generation: £ solutions calculated;
for i+ 1 tok do
| fitness()
end
end
final route = best fitness;

Algorithm 1: GAMTP algorithm.

In Algorithm [I} different FADs and vessels positions are used as inputs to calculate
the quasi-optimal best route. The first step is to predict r future positions for each FAD
movement, so that the first set of solutions is created. Hence, following the rules of GAs
based on the fitness of each solution, the population evolves towards the final route. It is
worth noting that the singularity of the proposal with regard to existing literature is in
how the fitness is calculated, as explained in detail in Algorithm [2

The fitness algorithm calculates how well each solution matches the predicted FADs
locations, as calculated previously ( f”’"); this prediction is combined with the vessels’
speed and fishing times to approximate the real route that each vessel is going to travel
in the dynamic FAD context.

In order to determine the fitness of a given solution it is necessary to calculate the
distance traveled by each vessel. The variables zg, z; and z; are used to select the FADs
that each vessel has been assigned to recover. Based on their speed, each vessel will
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Data: Solution input: (f1, fa,..., fn | 21,22, -+, 2m)
Data: FAD position matrix:
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Data: Vessels position inputs: (v1,va,...,0n)

Data: Vessels speed (s) and fishing time (the same for all vessels)
Result: fitness of the solution = total distance traveled

variables initialization: zy = 1;

for i < 1 to m do

v = v;: initial position of the vessel i;

r = 0,d; = 0: time and distance equal to zero;

zp = (20 +2i) — 1

for j < 29 to zy do

nt = time to recover f;“ at s knots from position v;

nd = distance traveled from position v to f;*r at s knots;
v = predicted position of f;“: update the vessel’s position;
r = r + nt+ fishing time: update the time;

d; = d; + nd: update the distance;

end

20 = z; + 1,

end

fitness = >, d;

Algorithm 2: Fitness algorithm.
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recover its FADs at their estimated position, depending on their arrival time, which starts
at t and evolves with ¢ 4+ . Finally, the fitness of the solution is measured as the sum of
the distance that all m vessels traveled (> ., d;).

Note that we ignore a FAD movement whenever a vessel is traveling to recover it.
The rest of the FADs, however, are assumed to continue moving while the vessels are
traveling or fishing, as shown in the fitness calculation. The rationale of this mathematical
simplification is to avoid calculating the collision vector from the vessel to the object
when it is moving. The only challenge of the alternative approach has to do with the
time calculation, which should improve the result of the final solution because it would
be more accurate than the current time calculation.

Figure 2: GAMTP algorithm procedure.

Figure [2| shows how GAMTP solution works. It includes the vessels and FADs initial
positions at time ¢, as well as the final positions of each FAD. Figure [2] is an example
of how the final fitness would be calculated, as the positions where the vessels recover
the FADs depend on the time of recovery. By selecting one vessel as starting point, we
can see that the first vector is to travel directly to the first FAD; however, the second
iteration finishes at the FAD’s expected location at time ¢t +x : € {1,...,7}. The same
procedure holds for the rest of the objects.

Note that, when f! = fi=1 = f1=2 then f! = ft*! = ... = f*. This means that,
if there is no FADs movement, and if the fishing time is equal to zero, our GAMTP
solution is identical to the classical GA approach for the mTSP. Thus, our contribution
is a generalization of all the solutions, from the particular case when the targets are
not moving and the vessels do not spend any time recovering targets, to the case where
targets are moving and different fishing times exists. Thus, for the implementation of the
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classic mTSP based on GA, no target movement is assumed for the fitness calculation,
so the resulting solution is compared to our GAMTP solution. This creates a static vs.
dynamic comparison, through which it is easy to see that the total distance traveled
using GAMTP and standard mTSP without prediction is very different.

6 Computational results

In this section we discuss the improvement achieved by addressing dynamic mTSP with
the method proposed: GAs based on Multiple Trajectory Prediction (GAMTP). Initially
we compare the Nearest Neighbor (NN) strategy, which is the method normally used by
tuna vessels, with GAMTP. Then, we compare the performance of GAMTP method with
mTSP solved only by genetic algorithms (GA), i.e., without prediction.

It is worth recalling that we use real data from different tuna fishing companies. In
order to test our model, and with scientific purposes exclusively, Marine Instruments
provided us with anonymous real data from several tuna vessels fishing in the FAO
capture zone no. 57 (Eastern Indian Ocean) from April 9th to April 23rd. According
to internal company records, in this area there are about 40 vessels operating at the
same time. Taking into account a maximum retrieving of 14 FADs per vessel and week,
it would be possible to collect a maximum of 1,120 FADs in this period of time. The
sample used in our simulations consists of 150 randomly selected FADs using the MSB
software (platform to receive and visualize the buoys data) from Marine Instruments.
This quantity represents a percentage of 8.0% with a level of significance greater than
10% (sampling error of 7.45%). Regarding the working conditions of the simulations,
they are the following:

e Vessels speed (average): 12 knots.

e FADs speed = FADs have different speeds, randing from 0.2 knots up to 2 knots.
e Fishing time: 3h for each object.

e Number of vessels: 2, 3, and 4 (the typical range per group in practice).

e Number of FADs: from 20 to 36.

e Number of FADs/vessel: from 5 (20 FADs for 4 vessels) to 14 (28 FADs for 2 vessels).

Considering this scenario, the total distance traveled by the group of vessels is
calculated based on both the number of vessels (two, three or four) and the number of
FADs (from 20 to 36). We have performed 10 measurements in each experiment, varying
the positions of the FADs and the vessels, to obtain representative mean values for each
case (Table Al in Appendix describe the design of the simulation tests). Once the values
for each of the experiments are obtained, the mean is calculated and results from GAMTP
are compared with the NN strategy and GA (without prediction) respectively. The results
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(average, standard deviation and the improvement percentage achieved between each two
methods) are shown in Table [2, We can observe that our GATP method is always better
than the NN and GA for recovering from 20 to 36 FADs.

Table 2: Computational results.

Total distance traveled (nautical miles) Improvement Comparison
Num. Vessels Num. FADs NN GA GAMTP GAMTP GAMTP
vs NN vs GA
z 12,084.7 10,764.4 10,211.6 15.5% 7.3%
20 o 2,118.7 1,601.2 1,384.6
T 11,549.6 10,649.9 9,765.3 15.4% 8.8%
24 o 992.5 648.8 875.9
9 z 13,600.9 12,597.8 11,778.4 13.4% 7.0%
28 o 975.8 901.6 567.5
T 11,040.1 10,588.4 9,997.7 9.4% 5.6%
32 o 1100.5 891.2 603.7
z 15,1214 15,172.3 13,942.8 7.8% 8.1%
36 o 1713.0 1050.9 590.1
z 13,876.2 11,310.6 10,918.4 21.4% 51%
20 o 2,011.0 535.8 507.4
T 14,091.9 12,193.4 11,615.3 17.6% 6.2%
24 o 1,424.1 518.8 426.0
3 z 13,505.8 11,858.3 11,357.3 15.9% 5.0%
28 o 3,024.6 2,497.3 2,403.0
z 12,273.5 11,367.6 10,446.8 14.9% 8.1%
32 o 1,178.3 605.1 884.2
T 11,142.6 10,418.8 9,628.5 13.6% 7.6%
36 o 989.2 667.8 761.0
z 13,197.0 10,279.2 9,662.6 26.8% 6.7%
20 o 1,364.0 425.6 488.4
z 13,666.9 11,202.4 10,506.6 23.2% 7.0%
24 o 1,742.6 342.2 555.2
4 T 15,526.4 13,151.2 12,3814 20.2% 5.9%
28 o 994.9 464.7 490.6
T 13,897.0 12,572.3 11,710.7 15.7% 6.9%
32 o 1,412.1 519.4 528.6
z 13,607.7 12,260.1 11,552.2 15.1% 5.8%
36 o 980.4 618.3 477.4

These results are supported statistically (Table 3] and . The comparison has been
performed using a repeated-measures analysis of variance (repeated-measures ANOVA)
for each experiment. Repeated-measures ANOVA must be used when, as here, we analyze
differences in mean scores under three or more different conditions. One of the main
conditions with these study designs is that the same individuals (vessels here) are being
measured more than once on the same dependent variable (i.e. why it is called repeated
measures) and the independent variable has different categories (here, the number of
vessels per group). According to this, Table [3| shows significant differences among the
methods used (Sig. = 0.000 < 0.05), and the results are consistent since the four most
widely used tests for ANOVA (Phillai’s trace, Wilks’ Lambda, etc.) all indicate a very
high significance. Secondly, getting deeper into how the means of the three methods
are significantly different, Table [4] supports our descriptive analysis based on a Pairwise
comparison: the average GAMTP distances are statistically lower than those obtained
with NN and GA for the three group of vessels.

In brief, the GAMTP strategy yields better results for all experiments (two, three,
and four vessels) relative to other common optimizing strategies (Figure |3). We prove
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Table 3: Multivariate test (ANOVA)

Experiment Type Effect Value F Hipothesis df Error df Sig.
Pillai’s Trace 0.884  98.597 2.00 26.00 000

Bxp. 12 vessels Methoq  Wilks’ Lambda 0.116  98.597 2.00 26.00 000
Xp. Li5 vessels % Hotelling’s Trace 7.584  98.597 2.00 26.00 000
Roy’s Largest Root  7.584  98.597 2.00 26.00 000

Pillai’s Trace 0.845 70.924 2.00 26.00 .000

. Wilks’ Lambda 0.155  70.924 2.00 26.00 .000

Exp. 2:3 vessels Method -y b io's Trace 5456 70.924 2.00 26.00  .000
Roy’s Largest Root  5.456  70.924 2.00 26.00 .000

Pillai’s Trace 0.866  83.682 2.00 26.00  .000

, Wilks’ Lambda 0.134  83.682 2.00 26.00  .000

Exp. 3:4 vessels Method  pyos o Trace 6437 83.682 2.00 26.00  .000
Roy’s Largest Root  6.437  83.682 2.00 26.00 000

Table 4: Pairwise comparison (ANOVA)

Num. Experiment Method (a) Method (b) Mean Diff. (a-b) Std. error Sig. [?:v?:r(];zzfsengf)}pl;t]gzzi;

NN GA 1,074.37 206.848 .000 546.424 1,602.363

GAMTP 1,941.233 171.268 .000 1,504.068 2,378.378

Exp. 1:2 vesscls GA NN -1,074.37 206.848 .000 -1,602.363 -546.424
GAMTP 866.867 106.990 .000 593.742 1,139.916
GAMTP NN -1,941.233 171.268 .000 -2,378.378 -1,504.068

GA -866.867 106.990 .000 -1,139.916 -593.742

NN GA 2,037.196 267.707 .000 1,353.884 2,720.508

GAMTP 2,650.947 281.720 .000 1,931.869 3,370.025
Exp. 2:3 vessels GA NN -2,037.196 267.707 .000 -2,720.508 -1,353.884
GAMTP 613.751 59.118 .000 462.854 764.648
NN -2,650.947 281.720 .000 -3,370.025 -1,931.869

GAMTP GA -613.751 59.118 .000 -764.648 -462.854

NN GA 2,585.811 234.998 .000 1,985.989 3,185.634

GAMTP 3,334.864 256.734 .000 2,679.565 3,990.172
Exp. 3:4 vessels GA NN -2,585.811 234.998 .000 -3,185.634 -1,985.989
GAMTP 749.057 102.720 .000 486.868 1,011.246
GAMTP NN -3,334.868 256.734 .000 -3,990.172 -2,679.565

GA -749.057 102.720 .000 -1,011.246 -486.868
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therefore that integrating forecasting within a metaheuristic method, such as genetic
algorithms, can yield better results than their simple non-predictive version in a dynamic
scenario. Undoubtedly, however, to achieve even better results, the prediction method
should be adapted to the specific characteristics of each environment. Here, for example,
improving the accuracy of long-term forecasting for FAD trajectories would require
a prediction technique that contemplates the ocean currents, winds or the Coriolis
Effect, among other factors. In fact, the results comparison suggests that the relative
improvement decreases as the collection time increases (i.e., the ratio FADs/vessel).

Improvement Achieved

Number of FADs collected by vessel (FADs/Vessel) 30,0%
Vessels | FADs 20 24 28 32 36
2 10 12 14 16 18
3 7 8 9 11 12
4 5 6 7 3 9

First comparison: GAMTP vs NN (a)

Vessels | FADs 20 24 28 32 36
2 15.5% 15.4% 13.4% 0.4% 7.8%
3 21.4% 17.6% 15.9% 14.9% 13.6%
4 26.8% 23.2% 20.2% 15.7% 15.1%

Second comparison: GAMTP vs GA (b)

Vessels | FADs 20 24 28 32 36
2 7.3% 8.8% 7.0% 5.6% 8.1%
3 5.1% 6.2% 5.0% 8.1% 7.6% |
4 6.7% 7.0% 59% 6.9% 58% 0.0%

T T T T T T T T )
5 6 7 8 9 i0 11 12 13 14 15 16 17 18
FADs/Vessel

Figure 3: GAMPT improvements evolution as the ratio of FADs/vessel increases (built
from Table 2).

Figure [3| describes this situation. First, from Table [2| the FADs/vessel ratio and
improvement reached for each experiment were calculated (tables on the left); then these
values were ordered according to this ratio and plotted. Figure [3|shows how lower collec-
tion rates (5 FADs/vessel) result in GAMTP results being as much as 26% better than
NN results, and simultaneously verifies that for higher working ratios (14 FADs/vessel),
this improvement is reduced up to 13%. A similar behavior shows the comparison with
GA. Even in those simulations with 16 or 18 FADs/vessel (32 and 36 FADs for 2 vessels)
results indicate that the GAMPT could reach a worse performance than the procedure
without prediction (Figure . While this industry never reaches ratios as high as 18
FADs per vessel in this period of time, these simulations allow us to enrich and understand
better the limitations of this proposal. This is due to the weakness of Newton’s motion
equation when making predictions in the long term, which obviously aggravates results as
the number of FADs that each vessel retrieves increases. This reinforces the importance
of prediction in the algorithm: although GAMTP yields better results than common
strategies, the improvements decrease as the number of FADs increases.
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7 Conclusions

This paper proposes a new method to address the multiple traveling salesman problem
with moving targets (mTSP-MT). Unlike previous analyses, where the focus was on ad
hoc quasi-experiments, moving targets are addressed here using an unrestricted generic
solution that combines a metaheuristic method with a predictive technique. Particularly,
the method first estimates the trajectory of each target using Newton’s motion equation
to feed then a GA that searches for the optimal route based on the total distance traveled
by all salesmen. Hence the name ” Genetic Algorithm based in Multiple Trajectory
Prediction” (GAMTP). Based on historical GPS data for tuna fishing FADs, results
show that the total distance traveled is always shorter with GAMTP than with other
common methods used by ship-owning companies, such as NN or GAs without prediction.
Integrating forecasting within a metaheuristic method (e.g., genetic algorithms) therefore
yields better results than in the simple non-predictive version.

From an academic perspective, GAMTP can be seen as a generalization of classic
approaches for solving the mTSP problem. With static objects, the predicted next
position is the same in GAMTP and GA. However, in dynamic scenarios with moving
objectives, GAMTP diverges because it evolves and continues optimizing the route by
considering the future movement of each target. GAMTP could thus be used generically
(in static and dynamic situations), as a suitable solution to obtain near-optimal routes.

In general terms, therefore, the paper opens up a set of possibilities for a wide range
of real-world situations. GAMTP allows not just tuna vessels but any group of agents
following moving targets (e.g., UAVs, autonomous devices and surveillance vehicles) to
minimize the total distance traveled. Furthermore, within each of these possible fields of
utilization, the algorithm could be specialized for specific tasks, such as prioritizing the
recovery of particular targets (i.e., the ones that have more tuna beneath them), working
with certain time windows for FAD recovery (e.g., tuna vessels do not fish at night),
or finding the optimal speed of each vessel, which saves even more fuel. This should
also open a new space for research. Furthermore, other interesting adaptations could
be found in static scenarios with fixed destinations but where forecasting is especially
relevant (e.g. situations where wind, currents, traffic jams, etc., are a critical factor).
Similarly it is worth noting that GAMTP would allow to address the new potential uses
that are emerging in mobility (e.g., delivery services, real-time mobility requirements,
drones scheduling and collaboration, etc.) conducted by companies such as Uber and
Amazon.

From an economic point of view, GAMTP can produce a considerable reduction in
fleets” direct costs. In a typical situation with a fleet of 3 vessels, each working 24 h/day
for 5 days, consumes approximately 1,000 USD/h (Parker et al., 2015). According to this,
the average savings per campaign would be up to 64,800 USD. In addition, the reduction
of the distance traveled not only affects the consumption of fuel with the estimations
just shown, but also facilitates a more efficient utilization rate of the vessels thanks to a
faster recovery process. Traveling is waste from an operational excellence perspective,
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whereas fishing, the output to maximize, is directly related to the number of FADs
recoveries. It is worth noting, however, that given the chaotic nature of ocean currents
and despite of the sophistication of the forecasting method, the GAMTP solutions add
less value for long-term predictions. In fact, as shown in Figure [3] lower collection rates
(e.g. 5FADs/vessel) have greater improvements over standard techniques than do higher
ratios (18 FADs/vessel).

Finally, taking into account the urge to stimulate sustainable business operations, the
use of the GAMTP strategy in fishing companies would directly reduce COs emissions
by and average of 18% at current rates (considering the distance saved by a tuna vessel).
This is undoubtedly a very significant improvement given that climate change represents
one of the main challenges for humanity today (Howard-Grenville, Buckle, Hoskins, &
George, [2014).
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A Appendix

Table Al: Experiment design

Num. Vessels

Num. FADs

Num. Tests

NN

mTSP-GA

GAMTP

20
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Test 10

Total distance traveled 1

Total distance traveled 10

Total distance traveled 1

Total distance traveled 10

Total distance traveled 1

Total distance traveled 10

24

Test 1

Test 10
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Total distance traveled 1
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Total distance traveled 10

28
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