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Abstract

We study hub problems where a set of nodes send and receive data

from each other. In order to reduce costs, the nodes use a network with

a given set of hubs. We address the cost sharing aspect by assuming

that nodes are only interested in either sending or receiving data, but

not both (one-way flow) or that nodes are interested in both sending

and receiving data (two-way flow). In both cases, we study the non-

emptiness of the core and the Shapley value of the corresponding cost

game.
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1 Introduction

Hub networks play a fundamental role in modeling telecommunication, trans-

portation, and parcel delivery systems. Assume that there are users located

at different geographical nodes who need to send a certain flow of data or

goods to each other through costly connections. A planner needs to locate

an optimal number of hub facilities at some nodes so that each other node is

connected to exactly one hub and all the hubs are connected to one another

at a reduced cost (due to economies of scale). Hence, the optimal flow of

data/goods between any pair of origin-destination nodes has a length of at

most four: It must go from the point of origin to its assigned hub (when the

origin is not itself a hub), then to the hub assigned to the destination (if it is

a different node) and finally to the destination (again, if it is not itself a hub).

This topology is applied to Internet connections (Bailey, 1997), telecommu-

nications between local networks (Greenfield, 2000), satellite communication

(Helme and Magnanti, 1989), airline networks (Bryan and O’Kelly, 1999;

Yang, 2009), and small package delivery (Sim et al., 2009).

Several classes of hub problems have been studied. We mention some of

them. Aykin (1994) considers that hubs have limited capacities and direct

connections between nohubs are allowed. Ernst and Krishnamoorthy (1999)

consider the case where there are capacity restrictions but they apply only

to the traffic arriving at hubs from nohubs. Sasaki and Fukushima (2003)

consider the case where there are capacity constraints on hubs and arcs.

Labbé et al. (2005) consider the case where each hub has a limited capacity

as regard the traffic that passes through it. The main issue addressed in these

papers is the study of algorithms for computing optimal ways of sending

goods between the nodes in such a way that the total cost is minimized.

Of course the location of the hubs plays a relevant role in the minimization

problem. See Alumur and Kara (2008) and Farahani et al. (2013) for surveys

on this literature.

Another interesting question is how to divide the cost of sending the good

from one node to another. This question has been successfully addressed in
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several kinds of problem. We mention some of them: Guardiola et al. (2009)

study production-inventory problems where players share production pro-

cesses and warehouse facilities, Bergantiños and Kar (2010), Bogomolnaia

and Moulin (2010), Dutta and Mishra (2012) and Trudeau (2012, 2014) con-

sider the cost of connecting agents to a source, Moulin (2014) consider users

that need to connect a pair of target nodes in a network, and Alcalde-Unzu

et al. (2015) consider the cost of cleaning a river. However, few papers have

studied this issue in hub problems. We mention three: in all of them the

first step is to consider a class of hub problems, the next is to associate a

cooperative game with each problem in the class, and the last is to study

the core of such problems. If the core is non empty, an allocation in the core

could be considered as a nice way of sharing the cost among the agents.

Skorin-Kapov (1998) studies p-hub allocation problems, where p hubs

must be optimally allocated. Several cooperative games are considered de-

pending on who the agents are (nodes or pairs of nodes) and what coalitions

can do (whether they must use the optimal network for the whole problem

or can construct the optimal network of the reduced problem induced by the

coalition). The core of such games is studied. Some games have an empty

core but others do not. Finally, the nucleolus of such games is considered.

Skorin-Kapov (2001) studies hub-like networks, which involves a p-hub

median problem where direct connection between nodes is possible. More-

over, there are savings when the traffic is high. He defines several associated

cooperative games where the set of agents are the links. He shows that some

of them can have an empty core, in other cases the core is a singleton, and

in other cases it has many points.

Matsubayashi et al. (2005) consider the case where the number of hubs

to be located is arbitrary; there is a cost of opening a hub and there is a

congestion cost associated with nodes (the greater the flow through a node,

the greater its cost). They also define an associated cooperative game and

study its core. In the cooperative game the players are the nodes and the

characteristic function is defined assuming that each coalition cooperatively
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constructs a network to minimize the total cost associated with hubs in the

coalition and communications initiated also by nodes in the coalition. More-

over, each coalition simply assumes that the rest of the nodes do not establish

any hub nodes and the coalition can determine the routing of all the traffic

generated by the other nodes. Given this, they prove that the core could be

empty, but they find a sufficient condition for the non-emptiness of the core

and propose an allocation in the core when it is non-empty.

Our also focuses on the cost sharing issue. We consider two cases. In the

first case (called one-way flow) we assume, as in Skorin-Kapov (1998, 2001)

and Matsubayashi et al. (2005), that nodes are only interested in sending

flow. In the second case (called two-way flow) we assume that agents are

interested in both sending and receiving flow. Internet connections are a

good example of situations covered by this case.

We study the existence of core allocations and, unlike Skorin-Kapov

(1998, 2001) and Matsubayashi et al. (2005), we also present and charac-

terize two rules that belong to the core and also satisfy other nice properties.

We now summarize our results for one-way flow. We consider two cooper-

ative games associated with each hub problem and related to those presented

by Skorin-Kapov (1998). In the first game we assume that nodes can only use

the optimal network for the whole problem. In the second game we consider

that nodes can construct their own optimal networks. In both games, when

we compute the cost of a coalition we consider only the flow sent by nodes

in the coalition.

We study the cores of both games. The core of the first game has many

points. In any allocation in the core each node pays the cost of sending its

flow and the cost of any hub is divided in any way among the nodes that use

such hub. The core of the second game could be empty. In particular, we

prove that the Shapley value corresponds to the allocation where each node

pays the cost of sending its flow and the cost of any hub is divided equally

among the nodes that use it. Thus, the Shapley value belongs to the core.

We also provide two axiomatic characterizations of it. The first one uses core
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selection (the allocation must be in the core) and equal treatment on hubs

(if the cost of a hub increases then any pair of agents such that either both

need the hub or neither needs the hub are affected in the same way). The

second characterization uses positivity (no node can obtain profits), equal

treatment on hubs, independence of irrelevant hubs (nodes are not affected

by a change in the cost of hubs that they do not need), and independence of

irrelevant flows (if the flow between two nodes increases, other agents should

not be affected).

We now summarize our results for the two-way flow. The study is similar

to the one-way flow. We associate two games. The first game is concave and

hence its core is non empty. It consists of the convex hull of the vector of

marginal contributions. The second game could have an empty core.

We study the Shapley value of the first game. Since the game is concave

it belongs to the core. We prove that the Shapley value corresponds to the

allocation where the cost of sending flow between any pair of nodes is divided

equally between the two nodes. Moreover, the cost of each hub is divided

equally between the nodes that need the hub to send or receive their flows.

Finally, we provide two axiomatic characterizations. The first one uses core

selection, equal treatment on hubs, and equal treatment on flows (if there is a

flow between a pair of nodes and it increases then both nodes must be affected

in the same way). The second characterization uses positivity, independence

of irrelevant hubs, independence of irrelevant flows, equal treatment on hubs,

and equal treatment on flows.

The paper is organized as follows. Section 2 presents the model. Section 3

studies the one-way flow case, where the nodes are only interested in sending

or receiving flow, but not both. Section 4 studies the two-way flow case,

where the nodes are interested in both sending and receiving flow.
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2 The model

We consider situations where a group of agents, located at different points,

want to send and receive some specific good, which is sent through a costly

network. Besides, we could locate some hubs in the agent’s points. All hub

agents are connected among them but each non-hub agent is connected to

only a hub agent. We now introduce the model formally.

N = {1, . . . , n} is a finite set of nodes (also called agents).

C = (cij)i,j∈N is a cost matrix. For each i, j ∈ N, cij is the cost of sending

a unit of flow from node i to node j. We assume cii = 0, cij = cji ≥ 0 and

cik ≤ cij + cjk for all i, j, k ∈ N .

F = (fij)i,j∈N is the flow matrix. For each i, j ∈ N , fij represents the

amount of flow from node i to node j. We assume fij ≥ 0 and fii = 0 for

all i, j ∈ N . Notice that we do not assume fij = fji, i.e. the flow is not

necessarily symmetric.

d = (di)i∈N indicates the cost of maintaining or constructing a hub at

each node. We assume di ≥ 0 for all i ∈ N .

α ∈ [0, 1] is the discounting factor of the cost when flow goes between a

pair of hubs. Namely, if i and j are both hubs, then the cost of sending a

unit of flow from i to j is αcij (instead of cij)
1.

The first issue is to locate an optimal number of hubs, selected from the set

of nodes. Besides, each non-hub is linked to exactly one hub and all the hubs

are connected to each other. The triangular inequation cik ≤ cij +cjk assures

that the optimal path origin-destination uses at most two hubs. When there

is a hub in node i ∈ N , we say with some abuse of notation that node i is a

hub. Otherwise, we say that node i is a non-hub.

A hub network on N is determined by a nonempty set H ⊆ N and a

function h : N \H −→ H such that h(i) is the hub linked to non-hub i. Let

H be the set of all hub networks on N . For notational convenience, we write

h(i) = i when i ∈ H, so that h is a function from N onto H. Besides, we

1A generalization would be to assume that these costs are given by another cost matrix

Ch =
(
chij
)
i,j∈N with chij ≤ cij for all i, j ∈ N . In our case, Ch = αC.
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also write h for the network associated with the function h. Namely

h = {{i, h (i)} : i ∈ N \H} .

Thus, given two nodes i, j ∈ N , flow from node i to node j goes first from

node i to hub h(i), then to hub h(j) and finally to node j (i = h(i) and/or

h(i) = h(j) and/or h(j) = j are possible).

The cost of a hub network h is given by∑
i∈N

∑
j∈N

(
cih(i) + αch(i)h(j) + ch(j)j

)
fij +

∑
i∈H

di.

For simplicity, we denote

λhij =
(
cih(i) + αch(i)h(j) + ch(j)j

)
fij

so that the cost is

∑
i∈N

∑
j∈N

λhij +
∑
i∈H

di.

A hub network h ∈ H where

min
h∈H

{∑
i∈N

∑
j∈N

λhij +
∑
i∈H

di

}
is reached is called optimal. Since H is finite, there is always at least one

optimal hub network.

A hub network problem is a tuple P = (N,C, F, d, α, h) where h is a hub

network.

Notice that we have not assumed that h is an optimal hub network. We

know that to compute an optimal hub network is NP hard. Thus, in many

practical situations we use heuristics to decide the hub network h to be

constructed. Hence, we do not know exactly if such hub network is optimal

or not. We make a very weak assumption on h, all hubs are needed in order

to send the flow. Namely, for all k ∈ H there exist i, j ∈ N with fij > 0

and k ∈ {h (i) , h (j)}. Even our results could be reformulated for the case
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in which some hubs are not needed, in order to make easier the reading, we

have decided to present it making this assumption.

We now define c(P ) as the cost associated with the hub network h.

Namely,

c(P ) =
∑
i∈N

∑
j∈N

λhij +
∑
i∈H

di. (1)

In many cases after finding an optimal (or quasi optimal) hub network, we

need to divide the cost of such network among the agents. A rule is a function

R that assigns to each hub network problem P an allocation R (P ) ∈ RN

satisfying ∑
i∈N

Ri (P ) = c(P ). (2)

Our aim is to study the cost allocation problem generated by each hub

network problem P . We are interested into studying fair allocations. The

idea is to propose desirable properties and try to find a rule satisfying many

of them.

We consider two cases depending on the needs of the agents. In the one-

way flow case, we assume that each agent is only interested in the flow that

leaves from it (the case where each agent is only interested in the flow that

arrives to it is similar). In the two-way flow case, each agent is interested in

both the flow that arrives to it and the flow that leaves from it.

A cost game is a pair (N, ĉ) where N is the set of agents and ĉ : 2N → R
is a cost function satisfying ĉ (∅) = 0. Each nonempty subset S ⊆ N is called

a coalition, and ĉ (S) denotes the cost of providing the needs of all agents in

S. Since ĉ depends on N , we write ĉ instead of (N, ĉ).

We say that ĉ is concave if for all l ∈ T ⊂ S ⊆ N , we have ĉ(S) −
ĉ (S \ {l}) ≤ ĉ(T )− ĉ (T \ {l}).

The core of a cost game ĉ is defined as

Core (ĉ) =

{
y ∈ RN :

∑
i∈N

yi = ĉ(N) and
∑
i∈S

yi ≤ ĉ (S)∀S ⊂ N

}
.

It is well known that the core may be empty. Nevertheless, when the cost

game is concave, the core is non-empty.
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The Shapley value (Shapley, 1953) is defined as the allocation Sh (ĉ) such

that

Shi (ĉ) =
∑

S⊂N\{i}

|S|! (n− |S| − 1)!

n!
[ĉ (S ∪ {i})− ĉ (S)]

for each i ∈ N .

3 One-way flow

In this section, we assume that agents are interested only in the flow that

leaves. The case in which they are interested only in the flow that arrives

is completely analogous. We first associate to each hub network problem a

cost game. Later we study the core and the Shapley value of such game.

For each hub network problem P , we associate the cost game cofP where

for each S ⊆ N , cofP (S) is the cost of sending the flow of all agents in S to

all agents through the hub network h. The cost game cofP models situations

where the hub network h (with associated set of hubs H) has already been

constructed. Thus, d could be considered as a vector of maintenance costs.

Agents in each coalition are only interested in the hubs they need for sending

their flow. We now define this cost game formally.

For each S ⊆ N , let Hof
S ⊆ H denote the set of hubs needed for sending

the flow of agents in S. Namely,

Hof
S = {k ∈ H : ∃i ∈ S, j ∈ N with fij > 0 and k ∈ {h (i) , h (j)}} .

Given i ∈ N , we write Hof
i instead of Hof

{i}. Notice that Hof
S =

⋃
i∈S H

of
i

for all S ⊆ N .

Now,

cofP (S) =
∑
i∈S

∑
j∈N

λhij +
∑
i∈Hof

S

di. (3)

When no confusion arises we write cof (S) instead of cofP (S).

Remark 3.1 Skorin-Kapov (1998) associates several games with each hub

network problem. One of them, c1 is closely related with cofP . Actually it could
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be considered as a generalization of c1. In our model when h has p hubs and

di = 0 for all i, cofP coincides with c1. Besides, Skorin-Kapov (1998) proves

that the core of c1 contains the single allocation where each agents pays the

cost of sending its flow.

3.1 The core

In the next theorem we prove that the core of cof is the set of allocations in

which each agent pays the cost of sending its flow. Besides, the cost of any

hub is divided in any way among the agents that need the hub for sending

its flow.

Theorem 3.1 For each hub network problem P the core of cof is nonempty,

and it is given by

Core
(
cof
)

=

{
x ∈ RN :

∑
i∈N xi = c(P ), xi =

∑
j∈N λ

h
ij + yi∀i ∈ N

where y ∈ RN
+ and

∑
i∈S yi ≤

∑
i∈Hof

S
di∀S ⊂ N

}
.

Proof. “⊇” is obvious.

We now prove “⊆”. Let x ∈ Core
(
cof
)
. Then, for each i ∈ N , xi =∑

j∈N λ
h
ij + yi where yi = xi −

∑
j∈N λ

h
ij. Since, x ∈ Core

(
cof
)
, for each

S ⊂ N,

cof (S) =
∑
i∈S

∑
j∈N

λhij +
∑
i∈Hof

S

di ≥
∑
i∈S

xi =
∑
i∈S

∑
j∈N

λh
N

ij +
∑
i∈S

yi

and thus
∑

i∈S yi ≤
∑

i∈Hof
S
di. It only remains to prove that y ∈ RN

+ .

Suppose not. Let j ∈ N be such that yj < 0. Thus,∑
i∈N\{j}

xi =
∑
i∈N

xi − xj = cof (N)− xj

=
∑
i∈N

∑
j∈N

λhij +
∑
i∈H

di −
∑
j∈N

λhij − yj

=
∑

i∈N\{j}

∑
j∈N

λhij +
∑
i∈H

di − yj

>
∑

i∈N\{j}

∑
j∈N

λhij +
∑
i∈H

di
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since Hof
N\{j} ⊆ H,

>
∑

i∈N\{j}

∑
j∈N

λh
N

ij +
∑

i∈Hof
N\{j}

di = cof (N \ {j})

which is a contradiction.

Skorin-Kapov (1998) also considers the game c∗1, which is obtained as c1

but assuming that each coalition can build their optimal network. Namely,

instead of using the hubs given by h, each coalition can locate hubs where

they want. Skorin-Kapov (1998) proves that the core of c∗1 could be empty.

In our case the same happens. The core of cof∗ could be empty. We will

see it by proving that the core of the following intermediate situation could

be also empty.

Assume that the optimal hub network is not unique. Thus, we should

decide which one to construct. It could be the case that some agents prefer

one over the other (for instance if an agent is a hub the cost of sending their

flow should be smaller). Thus, we can define the cost of a coalition as the

minimum over all optimal hub networks. Namely, for each S ⊆ N ,

c∗ (S) = min
h∈H,h is optimal

{
cofP (h)(S)

}
where P (h) is the hub network problem induced by the optimal hub network

h. Next example shows that the core of c∗ can be empty.

Example 3.1 Let N = {1, 2, 3}, cij = 1 for all i, j ∈ N , f12 = f23 = f31 = 1,

f21 = f32 = f13 = 10, α = 1, and di = 6 for all i ∈ N . There exist three

optimal hub networks {hi}i∈N , corresponding to putting a single hub in each

node i ∈ N , respectively. Furthermore, each two-node coalition would prefer

a different hub location. Coalition {1, 2} would prefer the hub to be at 1,

because

cofP (h1) ({1, 2}) = 29 ≤ min
{
cofP (h2) ({1, 2}) , cofP (h3) ({1, 2})

}
;

coalition {1, 3} would prefer to locate the hub at 3, because

cofP (h3) ({1, 3}) = 29 ≤ min
{
cofP (h1) ({1, 3}) , cofP (h2) ({1, 3})

}
;
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and coalition {2, 3} would prefer to locate the hub at 2, because

cofP (h2) ({2, 3}) = 29 ≤ min
{
cofP (h1) ({2, 3}) , cofP (h3) ({2, 3})

}
.

Let x be a core allocation. Then

100 = 2c∗ (N) = 2 (x1 + x2 + x3)

= (x1 + x2) + (x1 + x3) + (x2 + x3)

≤ cofP (h1) ({1, 2}) + cofP (h3) ({1, 3}) + cofP (h2) ({2, 3})

= 29 + 29 + 29 = 87,

which is a contradiction.

Thus, the core of c∗ is empty.

3.2 The Shapley value

We now study the Shapley value of cof , which we call the Shapley rule. We

first give an explicit formula. Later, we provide two axiomatic characteriza-

tions.

In the next theorem we prove that in the Shapley rule each agent pays

the cost of sending its flow. Besides, the cost of any hub is divided equally

among the agents that need the hub for sending their flow.

Theorem 3.2 For each hub network problem P and each i ∈ N ,

Shi

(
cofP

)
=
∑
j∈N

λhij +
∑
j∈Hof

i

dj∣∣∣{k ∈ N : j ∈ Hof
k

}∣∣∣ .
Proof. We consider several cost games. Let c0 be defined as c0 (S) =∑

i∈S
∑

j∈N λ
h
ij for each S ⊆ N . For each j ∈ N , let cj be defined as cj (S) =

dj if j ∈ Hof
S and cj (S) = 0 otherwise. Thus, for each S ⊆ N , cof (S) =

c0 (S) +
∑

j∈N c
j (S). Since the Shapley value is additive on c, we have that

for each i ∈ N , Shi
(
cof
)

= Shi (c
0) +

∑
j∈N Shi (c

j). Since c0 is an additive
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game (there exists a ∈ RN such that for each S ⊆ N , c0 (S) =
∑

j∈S ai) we

deduce that Shi (c
0) =

∑
j∈N λ

h
ij. For each j ∈ N , in the cost game cj, all

agents that need hub j (i.e. all k ∈ N such that j ∈ Hof
k ) are symmetric and

the agents that do not need hub j are dummy. Thus, for each j ∈ N ,

Shi
(
cj
)

=


dj

|{k∈N :j∈Hof
k }|

if j ∈ Hof
i

0 otherwise,

from where it is straightforward to check the result.

We now define several properties.

The first property says that no agent should obtain profit.

Positivity (Pos) For any hub network problem P and each i ∈ N , we have

Ri(P ) ≥ 0.

The second property says that equal agents must pay the same. Consider

the following example.

Example 3.2 Let P be such that N = {1, 2, 3}, cij = 3 and fij = 1 for all

i, j ∈ N ,and di = 6 for all i ∈ N . There are three optimal hub networks.

We construct a hub in node i and we join the other nodes to node i. Thus,

c (P ) = 30. Assume that h is the optimal hub network where the hub is at

node 1 (the other cases are analogous). Thus, cof is defined as follows:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
cof (S) 12 15 15 21 21 24 30.

Notice that even agents are symmetric in C, F , and d. Nevertheless, in cof ,

agents 2 and 3 are symmetric but agents 1 and 2 are not.

Since we are dealing with situations where h is given, we should consider

such hub network when defining equal nodes. Thus, given a hub network

problem P we say that nodes i and j are equal when several conditions hold:

First, fik = fjk for all k ∈ N \ {i, j}. Second, fij = fji. Third, i ∈ H if and

only if j ∈ H (namely, node i is a hub if and only if node j is a hub). Forth,
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{i, k} ∈ h if and only if {j, k} ∈ h (namely, if nodes i and j are nonhubs

then both are connected to the same hub). Fifth, for each {i, k} , {j, k} ∈ h,

cik = cjk.

Equal Treatment of Equals (ETE) For any hub network problem P and

each pair of equal nodes i, j ∈ N , we have that Ri (P ) = Rj (P ).

As in the case of ETE, the next properties are defined considering the hub

network h as fixed. The first of them says that we must select an allocation

in the core of the problem.

Core Selection (CS) For any hub network problem P , we have that

R (P ) ∈ Core
(
cofP

)
.

The next property says that if a node does not send any flow, then it

pays nothing.

Null Flow (NF ) For any hub network problem P and each i ∈ N such

that fij = 0 for all j ∈ N \ {i}, we have that Ri (P ) = 0.

The next property says that if the flow leaving node i increases, then

node i cannot pay less.

Flow Monotonicity (FM) For any pair of hub network problems P =

(N,C, F, d, α, h) and P ′ = (N,C, F ′, d, α, h) such that there exist i, j ∈
N satisfying fij ≥ f ′ij and fkl = f ′kl otherwise, then Ri (P ) ≥ Ri (P

′).

The next property says that if the maintenance cost of a hub increases,

then no node requiring such hub could pay less.

Hub Monotonicity (HM) For any pair of hub network problems P =

(N,C, F, d, α, h) and P ′ = (N,C, F, d′, α, h) such that there exists k ∈
N satisfying dk ≥ d′k and dj = d′j otherwise, then for each agent i such

that k ∈ Hof
i , we have that Ri (P ) ≥ Ri (P

′).
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The next property says that if the cost of a link increases, then the two

agents located at its vertices could not pay less.

Cost Monotonicity (CM) For any pair of hub network problems P =

(N,C, F, d, α, h) and P ′ = (N,C ′, F, d, α, h) such that there exists i, j ∈
N satisfying cij ≥ c′ij and ckl = c′kl otherwise, then we have that

Ri (P ) ≥ Ri (P
′) and Rj (P ) ≥ Rj (P ′).

Assume that the cost of some hub dk decreases. It is then clear that if h

was an optimal hub network in the original problem it will be also optimal in

the new problem. How agents should be affected? The next two properties

give an answer to this question.

The first one says that agents that need hub k or do not need hub k are

affected in the same way.

Equal Treatment on Hubs (ETH) For any pair of hub network prob-

lems P = (N,C, F, d, α, h) and P ′ = (N,C, F, d′, α, h) such that there

exists k ∈ N satisfying dk ≥ d′k and dj = d′j otherwise, then for all pair

of agents i, j such that k ∈ Hof
i ∩H

of
j or k /∈ Hof

i ∪H
of
j , we have that

Ri (P )−Ri (P
′) = Rj (P )−Rj (P ′) .

The second one says that agents that do not need hub k are not affected.

Independence of Irrelevant Hubs (IIH) For any pair of hub network

problems P = (N,C, F, d, α, h) and P ′ = (N,C, F, d′, α, h) such that

there exists k ∈ N satisfying dk ≥ d′k and dj = d′j otherwise, then we

have that Ri (P ) = Ri (P
′) for each agent i such that k /∈ Hof

i .

We now introduce a similar property to IIH but with flows instead of

hubs. If node i increases its flow to some other node j, then the other agents

should not be affected.
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Independence of Irrelevant Flows (IIF ) For any pair of hub network

problems P = (N,C, F, d, α, h) and P ′ = (N,C, F ′, d, α, h) such that

there exist j, k ∈ N satisfying 0 < f ′jk ≤ fjk and f ′j′k′ = fj′k′ otherwise,

then we have that Ri (P ) = Ri (P
′) for each agent i ∈ N \ {j}.

There are some relations between these properties,

Proposition 3.1 (a) CS implies Pos.

(b) Pos, IIH and IIF imply CS.

Proof. (a) Assume x ∈ Core
(
cof
)
. Then, for all i ∈ N ,

xi = cof (N)−
∑

j∈N\{i}

xj ≥ cof (N)− cof (N \ {i}) ≥
∑

j∈N\{i}

λhij ≥ 0.

(b) Let R be a rule satisfying Pos, IIH, and IIF . Fix S ⊂ N . Let ε > 0

and define P S,ε =
(
N,C, F S,ε, dS, α, h

)
as the problem obtained from P by

turning all positive flows not used by S into ε and all hub costs not used by

S into zero. Formally,

fS,εij =

{
ε if i /∈ S and fij > 0

fij otherwise

and

dSk =

{
0 if k /∈ Hof

S

dk otherwise.

Then, cof
PS,ε(N) ≤

∑
i∈S
∑

j∈N λ
h
ij +

∑
k∈Hof

S
dk + a(P )ε where

a (P ) = |{fij : fij > 0}|max

{
λhij
fij

: fij > 0

}
.

Now, ∑
i∈S

Ri(P )
IIH+IIF

=
∑
i∈S

Ri

(
P S,ε

)
= cof

PS,ε(N)−
∑
i∈N\S

Ri

(
P S,ε

)
Pos

≤ cof
PS,ε(N) ≤

∑
i∈S

∑
j∈N

λhij +
∑
k∈Hof

S

dk + a(P )ε

= cofP (S) + a(P )ε

16



which implies
∑

i∈S Ri(P ) ≤ cofP (S) because a(P ) does not depend on ε.

CS does not imply neither IIH nor IIF . The rule in which each agent

pays the cost of sending its flow and the cost of each hub is paid equally

by the agents that use the most expensive hubs among those that use that

hub satisfies CS but not IIH. The rule in which each agent pays the cost

of sending its flow and the cost of each hub is paid equally by the agents

sending more flow through this hub satisfies CS but not IIF .

In the next proposition we prove that the Shapley rule satisfy all the

above properties.

Proposition 3.2 The Shapley rule satisfies Pos, ETE, CS, NF , FM ,

HM , CM , ETH, IIH and IIF .

Proof. From Theorem 3.2, we deduce that Sh
(
cof
)

satisfies Pos, FM , HM ,

and CM . If i and j are equal in P , then it is easy to see that i and j are

symmetric in cof . Now, symmetry of the Shapley value implies that Sh
(
cof
)

satisfies ETE. Any i ∈ N with fij = 0 for all j ∈ N \ {i} is a dummy player

in cof . Hence, its Shapley value is zero, and so Sh
(
cof
)

satisfies NF . Let

P, P ′ and k be given as in the definition of ETH and IIH. Given i, j ∈ N
such that k ∈ Hof

i ∩H
of
j , by Theorem 3.2

Shi

(
cofP

)
− Shi

(
cofP ′
)

=
dk − d′k∣∣∣{l ∈ N : k ∈ Hof

l

}∣∣∣ = Shj

(
cofP

)
− Shj

(
cofP ′
)

Given i, j ∈ N such that k /∈ Hof
i ∪H

of
j , by Theorem 3.2

Shi

(
cofP

)
− Shi

(
cofP ′
)

= 0 = Shj

(
cofP

)
− Shj

(
cofP ′
)
.

Hence Sh
(
cof
)

satisfies ETH. Given i ∈ N such that k /∈ Hof
i , from Theo-

rem 3.2 we know that Shi
(
cof
)

does not depend on dk, and so Shi

(
cofP

)
=

Shi

(
cofP ′
)

and hence Sh
(
cof
)

satisfies IIH. Let P, P ′ and i, j, k be given

as in the definition of IIF . From Theorem 3.2 we have that Shi
(
cof
)

does

not depend on fjk. Hence, Sh
(
cof
)

satisfies IIF . From Proposition 3.1, it

satisfies CS.

We now give two characterizations of the Shapley rule.

17



Theorem 3.3 (a) The Shapley rule is the unique rule satisfying CS and

ETH.

(b) The Shapley rule is the unique rule satisfying Pos, IIH, IIF , and

ETH.

Proof. (a) By Proposition 3.2 the Shapley rule satisfies these properties.

We now prove the uniqueness. Let R be a rule satisfying CS and ETH.

Let P = (N,C, F, d, α, h) be any hub network problem. For each K ⊆ H,

let PK =
(
N,C, F, dK , α, h

)
with dK defined as follows:

dKi =

{
0 if i ∈ H \K
di otherwise.

For all k ∈ N , let Nk,0 =
{
i ∈ N : k /∈ Hof

i

}
, Nk,1 =

{
i ∈ N : k ∈ Hof

i

}
,

nk,0 =
∣∣Nk,0

∣∣ and nk,1 =
∣∣Nk,1

∣∣ for all k ∈ N .

ETH implies that, for each k ∈ K, there exist xk,0 and xk,1 such that for

all i ∈ Nk,0,

Ri

(
PK
)
−Ri

(
PK\{k}) = xk,0 (4)

and for all i ∈ Nk,1

Ri

(
PK
)
−Ri

(
PK\{k}) = xk,1. (5)

Since N = Nk,0 ∪Nk,1 and∑
i∈N

Ri

(
PK
)
−
∑
i∈N

Ri

(
PK\{k}) = dk

we have that for all k ∈ K,

nk,0xk,0 + nk,1xk,1 = dk. (6)

The equivalence relation in N defined as

i ∼ j ⇔ ∃k ∈ K : i, j ∈ Nk,1 or i, j ∈ Nk,0

determines a partition PK of N . It is straightforward to check that the

cost game cof
PK (N) =

∑
S∈PK

cof
PK (N). So CS implies that

∑
i∈S Ri

(
PK
)

=
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cof
PK (S) for all S ∈ PK . Moreover, any PL with L ⊂ K is a refinement of PK ,

so
∑

i∈S Ri

(
PL
)

= cof
PL(S) for all S ∈ PK .

We now consider several cases.

Case 1. Assume that PK has at least two components. Given k ∈ K,

there exist S, S ′ ∈ PK such that k ∈ S ∩ H and S ′ ⊆ Nk,0. Besides,

cof
PK\{k} (S ′) = cof

PK (S ′). Thus,

cof
PK (S ′) =

∑
i∈S′

Ri

(
PK
) (4)

=
∑
i∈S′

Ri

(
PK\{k})+ |S ′|xk,0

CS
= cof

PK\{k} (S ′) + |S ′|xk,0 = cof
PK (S ′) + |S ′|xk,0

which implies that xk,0 = 0.

By (6), xk,1 = dk
nk,1 for all k ∈ K. By (5), for each i ∈ N ,

Ri

(
PK
)

= Ri

(
PK\{k})+

dk
nk,1

.

Repeating the same argument, we deduce that for each i ∈ N ,

Ri

(
PK
)

= Ri

(
P ∅
)

+
∑
k∈Hof

i

dk
nk,1

.

Since R satisfies CS, under Theorem 3.1, Ri

(
P ∅
)

=
∑

j∈N λ
h
ij + yi for all

i ∈ N , where 0 ≤ yi ≤
∑

j∈Hof
i
d∅j . By definition of d∅, we have d∅j = 0 for all

j ∈ H. Since Hof
i ⊆ H, we deduce yi = 0 and so

Ri

(
P ∅
)

=
∑
j∈N

λhij.

By Theorem 3.2,

Ri

(
PK
)

=
∑
j∈N

λhij +
∑
k∈Hof

i

dk
nk,1

= Shi
(
PK
)
.

Case 2. Assume now PK = {N}. We consider several cases.

Case 2.1. Assume K = {k}. Since R satisfies CS, under Theorem 3.1,∑
i∈Nk,0

Ri

(
P {k}

)
=
∑
i∈Nk,0

∑
j∈N

λhij +
∑
j∈Nk,0

yi
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where y ∈ RN
+ and

0 ≤
∑
i∈Nk,0

yi ≤
∑

j∈Hof

Nk,0

d
{k}
j = 0

which implies
∑

i∈Nk,0 yi = 0. Thus,∑
i∈Nk,0

Ri

(
P {k}

)
=
∑
i∈Nk,0

∑
j∈N

λhij.

On the other hand,∑
i∈Nk,0

Ri

(
P {k}

) (4)
=
∑
i∈Nk,0

Ri

(
P ∅
)

+ nk,0xk,0 =
∑
i∈Nk,0

∑
j∈N

λhij + nk,0xk,0

which implies xk,0 = 0. So, for each i ∈ Nk,0,

Ri

(
P {k}

)
=
∑
j∈N

λhij = Shi
(
P {k}

)
.

Under (6), xk,1 = dk
nk,1 . So, for each i ∈ Nk,1,

Ri

(
P {k}

)
= Ri

(
P ∅
)

+
dk
nk,1

=
∑
j∈N

λhij +
dk
nk,1

= Shi
(
P {k}

)
.

Case 2.2. Assume now |K| > 1. We proceed by induction on |K|. Hence,

we assume R
(
PK′

)
= Sh

(
PK′

)
when |K ′| < |K|. We have three cases:

Case 2.2.1. Assume first nk,0 = 0 for some k ∈ K. By (5), for all

i ∈ N = Nk,1,

Ri

(
PK
)

= Ri

(
PK\{k})+ xk,1.

Hence, ∑
i∈N

Ri

(
PK
)

=
∑
i∈N

Ri

(
PK\{k})+ nxk,1

and thus

xk,1 =

∑
i∈N Ri

(
PK
)
−
∑

i∈N Ri

(
PK\{k})

n
=

dk
nk,1

.

Now for all i ∈ N = Nk,1,

Ri

(
PK
)

= Ri

(
PK\{k})+

dk
nk,1

.
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By induction hypothesis, for all i ∈ N

Ri

(
PK
)

=
∑
j∈N

λhij +
∑
j∈Hof

i

d
K\{k}
j

nk,1
+

dk
nk,1

=
∑
j∈N

λhij +
∑
j∈Hof

i

dKj
nk,1

= Shi
(
PK
)
.

Case 2.2.2. Assume now nk,1 = 0 for some k ∈ K. By (4), Ri

(
PK
)

=

Ri

(
PK\{k}) + xk,0 for all i ∈ N = Nk,0. The rest of reasoning is analogous

to the previous case and we omit it.

Case 2.2.3. Finally, assume nk,0 > 0 and nk,1 > 0 for all k ∈ K. We can

assume w.l.o.g. 1, 2 ∈ K. Let i1 ∈ N1,1 and i2 ∈ N1,0. Since PK = {N},
we know that there exists some k ∈ K such that either i1, i2 ∈ Nk,1 or

i1, i2 ∈ Nk,0. Assume w.l.o.g. that either i1, i2 ∈ N2,1 or i1, i2 ∈ N2,0. For

each k ∈ {1, 2} and each l ∈ {1, 2}, let f l (k) ∈ {0, 1} be defined such that

il ∈ Nk,f l(k). Hence, we know that f 1(1) = 1 (because i1 ∈ N1,1), f 2(1) = 0

(because i2 ∈ N1,0), and f 1(2) = f 2(2) (because either i1, i2 ∈ N2,1 or

i1, i2 ∈ N2,0).

By induction hypothesis, for any k ∈ {1, 2} and any l ∈ {1, 2},

Ril
(
PK
) (4)(5)

= Ril
(
PK\{k})+ xk,f

l(k) = Shil
(
PK\{k})+ xk,f

l(k)

=
∑
j∈N

λhilj
+
∑
j∈Hof

il

d
K\{k}
j

nj,1
+ xk,f

l(k).

Thus, for each l ∈ {1, 2},

x1,f l(1) − x2,f l(2) =
∑
j∈Hof

il

d
K\{1}
j − dK\{2}j

nj,1
=

d1

n1,1
f l(1)− d2

n2,1
f l(2).

In particular, taking a = f 1(2) = f 2(2) and l = 1,

x1,1 − x2,a =
d1

n1,1
− d2

n2,1
a (7)

and taking l = 2,

x1,0 − x2,a = − d2

n2,1
a. (8)
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Equations (6) for k = 1, 2 and equations (7)-(8) can be written as a matrix

equation as follows:
n1,1 0 n1,0 0

0 n2,1 0 n2,0

1 −a 0 a− 1

0 −a 1 a− 1

 ·

x1,1

x2,1

x1,0

x2,0

 =


d1

d2

d1
n1,1 − d2

n2,1a

− d2
n2,1a

 .

The determinant of the left matrix is (an− n2,1)n 6= 0. Hence, the matrix

equation has a unique solution given by xk,1 = dk
nk,1 and xk,0 = 0 for all

k ∈ {1, 2}. Thus,

Ri1
(
PK
) (5)

= Ri1
(
PK\{1})+ x1,1 = Ri1

(
PK\{1})+

d1

n1,1

Ri2
(
PK
) (4)

= Ri2
(
PK\{1})+ x1,0 = Ri2

(
PK\{1}) .

By induction hypothesis,

Ri1
(
PK
)

= Shi1
(
PK\{1})+

d1

n1,1

Th.3.2
=

∑
j∈N

λhi1j +
∑
k∈Hof

i1

d
K\{1}
k

nk,1
+

d1

n1,1

=
∑
j∈N

λhi1j +
∑
k∈Hof

i1

dKk
nk,1

Th.3.2
= Shi1

(
PK
)

Ri2
(
PK
)

= Shi2
(
PK\{1}) Th.3.2=

∑
j∈N

λhi2j +
∑
k∈Hof

i2

d
K\{1}
k

nk,1

=
∑
j∈N

λhi2j +
∑
k∈Hof

i2

dKk
nk,1

Th.3.2
= Shi2

(
PK
)
.

Since i1, i2 were taken arbitrarily from N1,1 and N1,0, respectively, and

these two sets form a partition of N , we conclude that Ri

(
PK
)

= Shi
(
PK
)

for all i ∈ N .

(b) It follows from part (a) and Proposition 3.1.

Remark 3.2 We now prove that the properties used in Theorem 3.3 are

independent.
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• Let R0 be defined as R0(P ) = x + Sh
(
cof
)

for some x ∈ RN with∑
i∈N xi = 0 and xi 6= 0 for some i ∈ N . R0 satisfies IIH, IIF and

ETH, but fails CS and Pos.

• Let ω ∈ RN be such that ωi > 0 for all i ∈ N and ωi 6= ωj for some

i 6= j. Let R1 be defined for each P and each i ∈ N as follows:

R1
i (P ) =

∑
j∈N

λhij +
∑
j∈Hof

i

ωi∑
k∈N :j∈Hof

k
ωk
dj.

R1 satisfies CS, Pos, IIH, and IIF , but fails ETH.

• Let R2 be defined for each P and i ∈ N as follows:

R2
i (P ) =

∑
j∈N

λhij +
∑
j∈H

dj
n
.

R2 satisfies Pos, IIF and ETH, but fails CS and IIH.

• Let R3 be defined for each P and i ∈ N as follows:

R3
i (P ) =

∑
k∈N

∑
j∈N λ

h
kj

n
+
∑
j∈Hof

i

dj∣∣∣{k ∈ N : j ∈ Hof
k

}∣∣∣ .
R3 satisfies Pos, IIH and ETH,but fails CS and IIF .

4 Two-way flow

In this section we consider the case in which the users are interested in both

receiving and sending data. Again, we assume that communication is carried

over a (maybe optimal) hub network. We first associate to each hub network

problem a cooperative game. Later on we study the core and the Shapley

value.

For each hub network problem P we associate the cost game ctfh where

for each S ⊆ N , ctfh (S) is the cost of sending and receiving the flow of all

agents in S to and from all agents through h. The cost game ctfh models
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situations where an (optimal) hub network h (with associated set of hubs

H) has already been constructed. Thus, d could be considered as a vector of

maintenance costs. Agents in each coalition are interested in the hubs they

need for sending or receiving their flow. Notice that we are applying the

same ideas than in the one-way flow. We now define this cost game formally.

For each S ⊆ N , let H tf
S ⊆ H denote the set of hubs needed for sending

or receiving the flow of agents in S. Namely,

H tf
S = Hof

S ∪ {k ∈ H : ∃i ∈ S, j ∈ N with fji > 0 and k ∈ {h (i) , h (j)}} .

Given i ∈ N , we write H tf
i instead of H tf

{i}. Like in the previous section,

H tf
S =

⋃
i∈S H

tf
i for all S ⊆ N .

Now,

ctfP (S) =
∑

(i,j)/∈(N\S)×(N\S)

λhij +
∑
i∈Htf

S

di. (9)

When no confusion arises we write ctf instead of ctfP .

4.1 The core

In the next theorem we prove that in the core allocations of ctf the cost

of sending or receiving flow between two nodes is divided between them.

Besides, the cost of any hub is divided among the agents that need the hub

for sending or receiving their flow. Before stating the theorem we need some

notation.

Let Π = {π : N −→ N : π biyective} be the set of orderings of agents in

N .

Given i ∈ N and j ∈ H, Πij ⊂ Π is the set of orderings such that node i

is the first that uses hub j, i.e. π(l) = i implies j /∈ H tf
π(l′) for all l′ < l.

Theorem 4.1 For each hub network problem, ctf is concave. Moreover, the

core is nonempty and given by the convex hull of the following set of vectors:
 ∑
j∈N :π−1(j)>π−1(i)

(
λhij + λhji

)
+

∑
j∈Htf

i :π∈Πij

dj


i∈N


π∈Π

.
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Proof. We first prove that
(
N, ctf

)
is concave. Let l ∈ T ⊂ S ⊆ N .

Since for each S ′ ⊂ N , H tf
S′ =

⋃
i∈S′ H

tf
i , we have that

H tf
S \H

tf
S\{l} ⊂ H tf

T \H
tf
T\{l}. (10)

Then,

ctf (S ′)− ctf (S ′ \ {l}) =
∑

(i,j)/∈(N\S′)×(N\S′)

λhij +
∑
i∈HS′

di

−
∑

(i,j)/∈(N\(S′\{l}))×(N\(S′\{l}))

λhij −
∑

i∈Htf

S′\{l}

di

=
∑

i∈N\S′
λhil +

∑
j∈N\S′

λhlj +
∑

i∈Htf

S′\H
tf
S\{l}

di.

Since all terms are non-negative, N \ S ⊂ N \ T and (10), we have that

ctf (S)− ctf (S \ {l}) ≤ ctf (T )− ctf (T \ {l})

which proves that
(
N, ctf

)
is concave.

It is well known that when the cost game is concave, the core coincides

with the Weber set. So it is the convex hull of the vectors of marginal contri-

butions. Notice that the coordinate i of the vector of marginal contributions

for π ∈ Π is ∑
j∈N :π−1(j)>π−1(i)

(
λhij + λhji

)
+

∑
j∈Htf

i :π∈Πij

dj,

hence the result holds.

Analogously to the one-way case, we consider now an intermediate situa-

tion between a fixed hub network and a variable hub network. Assume that

the optimal hub network is not unique and the planner should decide which

one to construct. We can define the cost of a coalition as the minimum over

all optimal hub networks. Namely, for each S ⊆ N ,

c∗∗ (S) = min
h∈H,h is optimal

{
ctfP (h)(S)

}
where P (h) is the hub network problem induced by the optimal hub network

h. Next example shows that the core of c∗∗ can be empty.
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Example 4.1 Let P be such that N = {1, 2, . . . , 6}, α = 1, f12 = f34 =

f56 = 1, fij = 0 otherwise. d1 = d2 = d3 = 1 and di ≥ 4 otherwise. The cost

matrix is given in the following table:

cij 2 3 4 5 6

1 2 2 3 3 3

2 1 3 4 3

3 4 3 3

4 3 3

5 4

This hub problem is depicted in Figure 1.

1

2

3

4

5

6

2 1

2

4

4

4

Figure 1: cij = 3 when no specified. Flow goes from 1 to 2, from 3 to 4, and

from 5 to 6.

There exist three optimal hub networks {hi}3
i=1, corresponding to putting

a single hub at either 1, 2 or 3, respectively. The cost of these networks is 14

each. Hence, c∗∗(N) = 14. Moreover, nodes 1, 2, 3, 4 can cover their own flow

at cost 7 when the hub is located at 2. Then, c∗∗({1, 2, 3, 4}) = 7. Analogously,

nodes 1, 2, 5, 6 can cover their own flow at cost 9 when the hub is located at

1, so that c∗∗({1, 2, 5, 6}) = 9. Analogously, nodes 3, 4, 5, 6 can cover their

own flow at cost 11 when the hub is located at 3, so that c∗∗({3, 4, 5, 6}) = 11.

Hence, a core allocation y should satisfy y1+y2+y3+y4 ≤ 7, y1+y2+y5+y6 ≤
9, and y3 + y4 + y5 + y6 ≤ 11. By adding these inequalities and dividing by 2,

we deduce that
∑

i∈N yi ≤ 13.5. Since c∗∗(N) = 14, we deduce that the core

of c∗∗ is empty.
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4.2 The Shapley value

We now study the Shapley value of ctf , which we also call the Shapley rule.

In the next theorem we prove that in the Shapley rule the cost of sending

flow between a pair of agents (λhij) is divided equally between both agents.

Besides, the cost of any hub is divided equally among the agents that need

the hub for sending or receiving their flow.

Theorem 4.2 For each hub network problem P and each i ∈ N ,

Shi
(
ctf
)

=
∑
j∈N

λhij + λhji
2

+
∑
j∈Htf

i

dj∣∣∣{k ∈ N : j ∈ H tf
k

}∣∣∣ (11)

Proof. The Shapley value is the average of the vectors of marginal contri-

butions. Thus,

Shi
(
ctf
)

=
1

|Π|

∑
π∈Π

∑
j∈N :π−1(j)>π−1(i)

(
λhij + λhji

)
+
∑
j∈Htf

i

∑
π∈Πij

dj

 .

Let Πij = {π ∈ Π : π−1(j) > π−1(i)}. Clearly, |Πij| = |Π|
2

. Hence,

1

|Π|
∑
π∈Π

∑
j∈N :π−1(j)>π−1(i)

(
λhij + λhji

)
=

1

|Π|
∑
j∈N

∑
π∈Πij

(
λhij + λhji

)
=

1

|Π|
∑
j∈N

|Πij|
(
λhij + λhji

)
=
∑
j∈N

λhij + λhji
2

which is the first part of (11).

Let T =
{
k ∈ N : j ∈ H tf

k

}
and t = |T |. We still need to prove that

1
|Π|
∑

j∈Htf
i

∑
π∈Πij

dj =
∑

j∈Htf
i

dj
t

. Clearly, it is enough to prove that
|Πij |
|Π| =

1
t

for all j ∈ H tf
i . Notice that Πij is the set of orderings in which the

predecessors of i are not in T . In particular, Πij =
⋃
s=1,...,n−t+1 Πs

ij where

Πs
ij = {π ∈ Πij : π(s) = i}. Hence,

|Πij |
|Π| =

∑n−t+1
s=1

|Πs
ij|
|Π| . Moreover,

|Πs
ij|
|Π| is

the probability of randomly picking up an order in Π satisfying that node i is
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in position s and it is preceded by s− 1 nodes in N \T . Let |N \ T | = n− t.
Then,∣∣Πs

ij

∣∣
|Π|

=
n− t
n
· n− t− 1

n− 1
· · · · · n− t− s+ 2

n− s+ 2
· 1

n− s+ 1
=

(n− s)!(n− t)!
n!(n− t− s+ 1)!

So

|Πij|
|Π|

=
(n− t)!
n!

n−t+1∑
s=1

(n− s)!
(n− s− t+ 1)!

=
(n− t)!t!

n!

n−t+1∑
s=1

(n− s)!
(n− s− t+ 1)!(t− 1)!

· 1

t

=
1(
n
t

) n−t+1∑
s=1

(
n− s
t− 1

)
1

t
.

Then, it is enough to prove that
(
n
t

)
=
∑n−t+1

s=1

(
n−s
t−1

)
. This is trivially true

when n = 1. By induction hypothesis on n, and using Stidel formula:(
n

t

)
=

(
n− 1

t− 1

)
+

(
n− 1

t

)
=

(
n− 1

t− 1

)
+

n−t∑
s=1

(
n− 1− s
t− 1

)

=

(
n− 1

t− 1

)
+

n−t+1∑
s=2

(
n− s
t− 1

)
=

n−t+1∑
s=1

(
n− s
t− 1

)
.

We now define properties in the two-way flow case. All but one are

analogous to the one-way flow case. Positivity and cost monotonicity are the

same. The other properties are defined by adapting the ideas behind the

properties defined in the one-way case to the two-way case.

Positivity (Pos) For any hub network problem P and each i ∈ N , we have

Ri(P ) ≥ 0.

Given a hub network problem P we say that nodes i and j are equal when

several conditions hold: First, fik = fjk and fki = fki for all k ∈ N \ {i, j}.
Second, fij = fji. Third, i ∈ H if and only if j ∈ H. Forth, {i, k} ∈ h if

and only if {j, k} ∈ h. Fifth, for each {i, k} , {j, k} ∈ h, cik = cjk. These

conditions are the same as in the one-way flow case, except for the first one.

Equal nodes should not only send the same flow, but also receive it.
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Equal Treatment of Equals (ETE) For any hub network problem P and

each pair of equal nodes i, j ∈ N , we have that Ri (P ) = Rj (P ).

Core Selection (CS) For any hub network problem P , we have that

R (P ) ∈ Core
(
ctfP

)
.

Null Flow (NF ) For any hub network problem P and each i ∈ N such

that fij = fji = 0 for all j ∈ N \ {i}, we have that Ri (P ) = 0.

Flow Monotonicity (FM) For any pair of hub network problems P =

(N,C, F, d, α, h) and P ′ = (N,C, F ′, d, α, h) such that there exist i, j ∈
N satisfying fij ≥ f ′ij and fkl = f ′kl otherwise, then Ri (P ) ≥ Ri (P

′)

and Rj (P ) ≥ Rj (P ′).

Hub Monotonicity (HM) For any pair of hub network problems P =

(N,C, F, d, α, h) and P ′ = (N,C, F, d′, α, h) such that there exists k ∈
N satisfying dk ≥ d′k and dj = d′j otherwise, then for each agent i such

that k ∈ H tf
i , we have that Ri (P ) ≥ Ri (P

′).

Cost Monotonicity (CM) For any pair of hub network problems P =

(N,C, F, d, α, h) and P ′ = (N,C ′, F, d, α, h) such that there exists i, j ∈
N satisfying cij ≥ c′ij and ckl = c′kl otherwise, then we have that

Ri (P ) ≥ Ri (P
′) and Rj (P ) ≥ Rj (P ′).

Equal Treatment on Hubs (ETH) For any pair of hub network prob-

lems P = (N,C, F, d, α, h) and P ′ = (N,C, F, d′, α, h) such that there

exists k ∈ N satisfying dk ≥ d′k and dj = d′j otherwise, then for all pair

of agents i, j such that k ∈ H tf
i ∩H

tf
j or k /∈ H tf

i ∪H
tf
j , we have that

Ri (P )−Ri (P
′) = Rj (P )−Rj (P ′) .

Independence of Irrelevant Hubs (IIH) For any pair of hub network

problems P = (N,C, F, d, α, h) and P ′ = (N,C, F, d′, α, h) such that

there exists k ∈ N satisfying dk ≥ d′k and dj = d′j otherwise, then we

have that Ri (P ) = Ri (P
′) for each agent i such that k /∈ H tf

i .
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Independence of Irrelevant Flows (IIF ) For any pair of hub network

problems P = (N,C, F, d, α, h) and P ′ = (N,C, F ′, d, α, h) such that

there exist j, k ∈ N satisfying 0 < f ′jk ≤ fjk and f ′j′k′ = fj′k′ otherwise,

then we have that Ri (P ) = Ri (P
′) for each agent i ∈ N \ {j, k}.

The analogous results for Proposition 3.1 also holds in the two-flow case.

Proposition 4.1 (a) CS implies Pos.

(b) Pos, IIH and IIF imply CS.

Proof. It is analogous to the proof of Proposition 3.1 and we omit it.

CS does not imply neither IIH nor IIF . The rule in which each agent

pays half the cost of sending and receiving her flow and the cost of each hub

is paid equally by the agents that use the most expensive hubs among those

that use that hub satisfies CS but not IIH. The rule in which each agent

pays half the cost of sending and receiving her flow and the cost of each hub

is paid equally by the agents sending more flow through this hub satisfies CS

but not IIF .

The next property is new. It says that a variation of flow affects the

sender and the receiver in the same way. Note that this requirement is not

reasonable in the one-flow case but it is in the two-way case.

Equal Treatment on Flows (ETF ) For any pair of hub network prob-

lems P = (N,C, F, d, α, h) and P ′ = (N,C, F ′, d, α, h) such that there

exists k, l ∈ N satisfying 0 < f ′kl ≤ fkl and f ′ij = fij otherwise, we have

that

Ri (P )−Ri (P
′) = Rj (P )−Rj (P ′)

for all pair of agents i, j such that {i, j} = {k, l} or {i, j} ∩ {k, l} = ∅.

In the next proposition we prove that the Shapley rule satisfy all these

properties.

Proposition 4.2 The Shapley rule satisfies Pos, ETE, CS, NF , FM ,

HM , CM , ETH, IIH, IIF and ETF .
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Proof. The proof for Pos, ETE, CS, NF , FM , HM , CM , ETH, IIH

and IIF is analogous to that of Proposition 3.2 (using Theorem 4.2 instead

of Theorem 3.2 and Proposition 4.1 instead of Proposition 3.1) and we omit

it.

Let P, P ′ be given as in the definition of ETF . We consider two cases:

1. {i, j} = {k, l}. Let λh
′

the λh associated with P ′. By Theorem 4.2,

Shi

(
ctfP

)
− Shi

(
ctfP ′
)

=
λhij − λh

′
ij

2
= Shj

(
ctfP

)
− Shj

(
ctfP ′
)
,

and hence Sh
(
ctf
)

satisfies ETF .

2. {i, j} ∩ {k, l} = ∅. By Theorem 4.2,

Shi

(
ctfP

)
− Shi

(
ctfP ′
)

= 0 = Shj

(
ctfP

)
− Shj

(
ctfP ′
)
,

Similarly to Theorem 3.3, we give two characterizations of the Shapley

rule.

Theorem 4.3 (a) The Shapley rule is the unique rule satisfying CS, ETH

and ETF .

(b) The Shapley rule is the unique rule satisfying Pos, IIH, IIF , ETH,

and ETF .

Proof. (a) By Proposition 4.2 the Shapley rule satisfies these properties.

We now prove the uniqueness. Let R be a rule satisfying CS, ETH and

ETF .

Let P = (N,C, F, d, α, h) be a hub network problem. We assume di = 0

for all i ∈ H; the extension to positive hub costs is analogous to the proof of

Theorem 3.3 and we omit it.

Let E = {(i, j) : fij > 0} and, for each i ∈ N and e ∈ E, let ai(e) =

1 when node i is adjacent to e, and ai(e) = 0 otherwise. Denote E =

{e1, . . . , eγ}. We assume, w.l.o.g., e1 = (1, 2). We also assume, w.l.o.g.,

e2 = (2, 1) in case (2, 1) ∈ E.
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For each ε > 0, let P ε = (N,C, F ε, d, α, h) defined by f εij = ε for all (i, j)

with fij > 0, and f εij = fij = 0 otherwise.

Let a(P ) de defined as in the proof of Proposition 3.1. Suppose that, for

ε small enough, there exists xP ∈ RN with −7|E|a(P )ε ≤ xPi ≤ 7|E|a(P )ε for

all i ∈ N such that

Ri(P ) =
∑
e∈E

λhe
2
ai(e) + xPi for all i ∈ N. (12)

Since Ri(P ) does not depend on ε, we deduce that for all i ∈ N

Ri(P ) =
∑
e∈E

λhe
2
ai(e) =

∑
j∈N

λhij + λhji
2

= Shi(P ).

Hence, we just need to prove that (12) holds.

For each ek ∈ E, we define P−k =
(
N,C, F−k, d, α, h

)
with f−kek = ε and

f−kij = fij otherwise. For notational convenience, we write λhk, f
−k
ij and ai(k)

instead of λhek , f−ekij and ai(ek), respectively.

We proceed by induction on |E|. Case E = ∅ is not possible because H

is nonempty and for each k ∈ H we assume that there exist i, j ∈ N with

fij > 0 and k ∈ {h (i) , h (j)}.
Assume then E = {e1}. In this case, P−1 = P ε. Let xPi = 0 if i /∈ {1, 2}

and xPi = Ri(P ) − λh1
2

if i ∈ {1, 2}. We prove that for all i ∈ N , xPi lies on

the interval [−7a(P )ε, 7a(P )ε].

Let i /∈ {1, 2}. By CS, Ri(P ) ≤ ctfP ({i}) = 0. Since ai(e1) = 0 and λhe = 0

when e 6= e1, (12) holds trivially.

We now prove it for i = 1 (the case i = 2 is analogous). By ETF , there

exists y1,1 ∈ R such that R1(P ) − R1 (P−1) = R2(P ) − R2 (P−1) = y1,1.

Hence,

y1,1 =
R1(P ) +R2(P )−R1(P−1)−R2(P−1)

2
.

By CS, 0 ≤ R1(P ) + R2(P ) = λh1 and 0 ≤ R1(P−1) + R2(P−1) ≤ a(P )ε.

Hence,

y1,1 ∈
[
λh1
2
− a(P )ε,

λh1
2

+ a(P )ε

]
.
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By induction hypothesis, xP
−1

1 ∈ [−a(P )ε, a(P )ε]. Thus,

R1(P ) = R1

(
P−1

)
+ y1,1 = xP

−1

1 + y1,1 ∈
[
λh1
2
− 2a(P )ε,

λh1
2

+ 2a(P )ε

]
.

and so (12) holds with xP1 = R1(P )− λh1
2

.

Assume now (12) holds when |E| < γ and suppose |E| = γ. We consider

several cases:

Case 1. γ = 2 and e2 = (2, 1), so that E = {e1, e2}. Then, we proceed as

above defining y1,1 in the same way.

Case 2. Either γ > 2 or e2 6= (2, 1). Notice that this implies n > 2. Fix

i ∈ N . We consider two cases.

Case 2.1. ai(e) = 0 for all e ∈ E. We take xPi = 0. Then, by CS, (12)

holds because Ri(P ) = 0.

Case 2.2. There exists k ∈ E such that ai(k) = 1. Fix also el ∈ E \ {ek}
with different adjacent nodes than ek. We can find such el because either

γ > 2 or e2 6= (2, 1).

ETF implies that there exist yk,0, yk,1, yl,0 and yl,1 such that Rj (P ) −
Rj

(
P−k

)
= yk,a

j(k) and Rj (P )−Rj

(
P−l
)

= yl,a
j(l) for all j ∈ N .Since∑

j∈N

Rj (P )−
∑
j∈N

Rj

(
P−k

)
= λhk −

λhk
fk
ε,

we have

2yk,1 + (n− 2)yk,0 = λhk + zk,1 (13)

where zk,1 = −λhk
fk
ε ∈ [−a(P )ε, 0]. Analogously,

2yl,1 + (n− 2)yl,0 = λhl + zl,1 (14)

with zl,1 ∈ [−a(P )ε, 0].

On the other hand, Ri(P ) = Ri(P
−k) + yk,1 = Ri(P

−l) + yl,a
i(l). Hence,

yk,1 − yl,ai(l) = Ri(P
−l)−Ri(P

−k)

by induction hypothesis,

=
λhk
2
− λhl

2
ai(l) + xP

−l

i − xP−k

i
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with xP
−l

i , xP
−k

i ∈ [−7γ−1a(P )ε, 7γ−1a(P )ε].

We define zk,0 = xP
−l

i − xP−k

i ∈ [−2 · 7γ−1a(P )ε, 2 · 7γ−1a(P )ε] so that

yk,1 − yl,ai(l) =
λhk
2
− λhl

2
ai(l) + zk,0. (15)

We repeat the reasoning for some j ∈ N adjacent to el (i.e. aj(l) = 1)

but not to ek (i.e. aj(k) = 0). We can find such j because el has different

adjacent nodes than ek. Then, we get

yl,1 − yk,0 =
λhl
2

+ zl,0 (16)

with zl,0 ∈ [−2 · 7γ−1a(P )ε, 2 · 7γ−1a(P )ε].

Equations (13)-(14)-(15)-(16) form a system of linear equations given by
2 0 n− 2 0

0 2 0 n− 2

1 −ai(l) 0 ai(l)− 1

0 1 −1 0

 ·

yk,1

yl,1

yk,0

yl,0

 =


λhk + zk,1

λhl + zl,1

λhk
2
− λhl

2
ai(l) + zk,0

λhk
2

+ zl,0

 .
The determinant of the first matrix is (n + 2ai(l) − 4)n. We consider

several cases.

Case 2.2.1. ai(l) = 1. Then, (n + 2ai(l) − 4)n 6= 0. Thus, the previous

system of linear equations have a unique solution which is given for yk,1 by

yk,1 =
λhk
2

+
z

(n− 2)n

where z = (n− 2)zk,1 − nzl,1 + (n2 − 4n+ 4)zk,0 + (n2 − 4n+ 4)zl,0.

Since zk,1, zl,1, zk,0, zl,0 ∈ [−2 · 7γ−1a(P )ε, 2 · 7γ−1a(P )ε], we deduce that

z ∈ [−2(2n2 − 6n+ 6) · 7γ−1a(P )ε, 2(2n2 − 6n+ 6) · 7γ−1a(P )ε].

For n > 2, we have 2(2n2−6n+6)
(n−2)n

≤ 6 and hence

z

(n− 2)n
∈ [−6 · 7γ−1a(P )ε, 6 · 7γ−1a(P )ε]. (17)

By induction hypothesis,

Ri(P ) = Ri(P
−k) + yk,1 =

∑
e∈E

λhe
2
ai(e) + xP

−l

i +
z

(n− 2)n
.
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Let us define xPi = xP
−l

i + z
(n−2)n

. By (17) and xP
−l

i ∈ [7γ−1a(P )ε, 7γ−1a(P )ε],

we deduce that xPi ∈ [−7γa(P )ε, 7γa(P )ε].

Case 2.2.2. ai(l) = 0 and n 6= 4. Then, (n+ 2ai(l)− 4)n 6= 0. Thus, the

previous system of linear equations have a unique solution which is given for

yl,0 by

yl,0 =
z

(n− 4)n

where z = −2zk,1 + (n− 2)zl,1 + 4zk,0 + (−2n+ 4)zl,0.

Since zk,1, zl,1, zk,0, zl,0 ∈ [−2 · 7γ−1a(P )ε, 2 · 7γ−1a(P )ε], we deduce that

z ∈
[
−3n · 7γ−1a(P )ε, 3n · 7γ−1a(P )ε

]
.

For n ≥ 3, n 6= 4 we have 6n
(n−4)n

≤ 6 and hence

yl,0 ∈ [−6 · 7γ−1a(P )ε, 6 · 7γ−1a(P )ε]. (18)

By induction hypothesis,

Ri(P ) = Ri(P
−l) + yl,0 =

∑
e∈E

λhe
2
ai(e) + xP

−l

i + yl,0.

Let us define xPi = xP
−l

i + yl,0. By (18) and xP
−l

i ∈ [−7γ−1a(P )ε, 7γ−1a(P )ε],

we deduce that xPi ∈ [−7γa(P )ε, 7γa(P )ε].

Case 2.2.3. ai(l) = 0 and n = 4. Then, (n + 2ai(l) − 4)n = 0. In

this case we replace equation (16) by either yk,0 − yl,0 = zlk,0 or yl,1 − yk,1 =
λhl
2
− λhk

2
+zlk,1, with zlk,· ∈ [−2·7γ−1ε, 2·7γ−1ε]. Now the resulting determinant

is non zero. The rest of the proof is similar and we omit further details.

(b) It follows from (a), Proposition 4.2, and Proposition 4.1.

Remark 4.1 We now prove that the properties used in Theorem 4.3 are

independent.

• Let R0 be defined as R0(P ) = x + Sh
(
ctf
)

for some x ∈ RN with∑
i∈N xi = 0 and xi 6= 0 for some i ∈ N . R0 satisfies IIH, IIF , ETH

and ETF , but fails CS and Pos.
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• Let ω ∈ RN be such that ωi > 0 for all i ∈ N and ωi 6= ωj for some

i 6= j. Let R1 be defined for each P and each i ∈ N as follows:

R1
i (P ) =

∑
j∈N

λhij + λhji
2

+
∑
j∈Htf

i

ωi∑
k∈N :j∈Htf

k
ωk
dj.

R1 satisfies CS, Pos, IIH, IIF and ETF , but fails ETH.

• Let R2 be defined for each P and i ∈ N as follows:

R2
i (P ) =

∑
j∈N

λhij + λhji
2

+
∑
j∈H

dj
n
.

R2 satisfies Pos, IIF , ETH and ETF , but fails CS and IIH.

• Let R3 be defined for each P and i ∈ N as follows:

R3
i (P ) =

∑
k∈N

∑
j∈N

λhkj

n
+
∑
j∈Htf

i

dj∣∣∣{k ∈ N : j ∈ H tf
k

}∣∣∣ .
R3 satisfies Pos, ETH, IIH and ETF , but fails CS and IIF .

• Let R4 be defined for each P and i ∈ N as follows:

R4
i (P ) =

∑
j∈N

λhij +
∑
j∈Htf

i

dj∣∣∣{k ∈ N : j ∈ H tf
k

}∣∣∣ .
R4 satisfies CS, Pos, IIH, IIF and ETH but fails ETF .
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