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Abstract

The Program Evaluation Review Technique (PERT) is a tool used
to schedule and coordinate activities in a complex project. In assigning
the cost of a potential delay, we characterize the Shapley rule as the
only rule that satisfies consistency and other desirable properties.
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1 Introduction

Large-scale projects require the coordination of numerous activities, some of

which can be performed sequentially, while others can take place in parallel.

The Program Evaluation and Review Technique (PERT) is an operational

research tool used to schedule and coordinate activities. The tool was devel-

oped by the U.S. Navy in the late 1950s to manage the Polaris submarine
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missile program, a project involving thousands of contractors.1 The tool

uses networks to model all the activities and can help reduce both the time

and cost required to finish a project.

PERT planning involves several steps, including estimating of the time

required for each activity and determining the critical activities (activities

that have the potential to delay the entire project). In the example shown

in Figure 1, each arc represents an activity and the number in brackets the

corresponding time. The critical activities are a, b, c, d and g.

* * * * *
a(2)

d(6)

b(4)

e(3)

c(1)

f(2)

g(3)

Figure 1: A PERT graph.

For projects that suffer from delays, it may be useful to identify the activ-

ities involved and the responsibility of each for causing the delay. Although

costs typically arise when a project is not fully completed on time, it may

also be the case these can be reduced by ensuring certain important parts of

the project are completed.

In this paper, we seek to contribute to the literature on cost alloca-

tion by studying the share of the cost of the delay between activities. The

subject was first studied by Bergantiños and Sánchez (2002) and Brânzei

et al. (2002). The former present two rules, one based on serial cost sharing

problems and the other on game theory. They also introduce some desir-

able properties and study which of these are satisfied by the rules. The

second study takes a different approach, assigning two related problems to

each PERT situation: a bankruptcy problem and a cooperative game. The

rules and values suggested in the respective fields (e.g. the proportional rule

and the Shapley value) are then studied and applied to the original PERT
1Another similar technique is the Critical Path Method (CPM) which was developed

in 1957 for project management in the private sector. CPM and PERT have become

synonyms with a number of variations used to refer to the same technique (PERT, CPM,

or PERT/CPM).
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situation.

Furthermore, Bergantiños and Vidal-Puga (2009) use an indirect ap-

proach to determine a rule that distributes the PERT time equally among

the activities.

In the literature on cost allocation, one of the most important issues is

to find allocation rules that are optimal, fair, and strategically stable. In

PERT situations, however, strategic stability has no clear definition: the

graph structure is closed and, as such, no group of activities can do with-

out the others. This means that concepts such as the core and population

monotonicity are applicable.

As such, we must focus on properties based on the ideas of optimality

and fairness. Examples of properties based on optimality are efficiency (the

cost assigned should exactly cover the delay cost) and cost monotonicity

(no activity should pay more if it finishes ahead of schedule). Examples

of properties based on fairness are dummy (an activity finishing on schedule

pays nothing), anonymity (the allocation does not depend on the name of the

activities), and symmetry (symmetric activities pay the same). In general

there are many rules to satisfy these properties.

As Winter (2002) argues, one of the fundamental requirements of any

legal system is that it is internally consistent. In terms of the rules we would

like to use for allocating the costs of delays, the allocation will typically

depend on the PERT graph, scheduled completion times, actual completion

times and (as argued above) the cost function.

Let us assume we focus our attention on a group of activities B. Once

the project is finished, we can attempt to evaluate the cost of these activities

if they had been completed at different times. This evaluation gives rise to

a new cost function for B and hence a different (reduced) PERT situation.

The rule is said to be consistent if the payoff for the activities in the reduced

PERT situation are the as in the original PERT situation. In this paper, we

define a rule for PERT problems and show that it is consistent in the sense

explained above.

The paper is organized as follows: in Section 2, we give the notation

and define the model; in Section 3 we study the Shapley rule and provide

a characterization based on anonymity, consistency, scale invariance, and
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standard for two; finally, in Section 4, we study other rules.

2 The problem

We denote the set of nonnegative real numbers as R+ and the set of natural

numbers as N. Given a finite set N , we denote the cardinal set of N as |N |.
Given x, y ∈ RN , we write x ≤ y when xi ≤ yi for all i ∈ N . Given x ∈
RN and S ⊂ N , we denote the restriction of x on S as xS , i.e. xS = (xi)i∈S .

Given x ∈ RN , S ⊂ N and y ∈ RS , x/y denotes the vector z ∈ RN with

zi = yi if i ∈ S and zi = xi if i ∈ S where S denotes the set N \ S. For

simplicity when S = {i} and y = (yi) ∈ RS , we write x/yi instead of x/y.

0N denotes the vector (0, ..., 0) ∈ RN+ .
Let ΠN be the set of all permutations over the finite set N ⊂ N. Given

π ∈ ΠN , let Pre (i, π) denote the set of elements of N which come before

i in the order given by π, i. e. Pre (i, π) = {j ∈ N | π (j) < π (i)} . Given

S ⊂ N , let πS denote the order induced by π among agents in S.

A game with transferable utility (TU game) is a pair (N, v) where N is

a finite set and v : 2N → R is the characteristic function satisfying v(∅) = 0.

Given S ⊂ N , we denote the restricted game of (N, v) to S as (S, v′), where

v′(T ) = v(T ) for all T ⊂ S. We denote by Sh (N, v) the Shapley value

(Shapley, 1953) of the TU game (N, v). It is well known that for all i ∈ N ,

Shi (N, v) =
1

|N |!
∑
π∈ΠN

(v (Pre (i, π) ∪ {i})− v (Pre (i, π))) .

A PERT problem with delays over N is a tuple P =
(
N,≺, x0, x, C

)
where

• N ⊂ N denotes a finite set of activities forming the project.

• ≺ is a partial order in N , i.e. ≺ satisfies transitivity (i ≺ j and j ≺ k

implies i ≺ k) and asymmetry (i ≺ j implies j ⊀ i). Given i, j ∈ N ,

i ≺ j means that activity j cannot begin until activity i is finished.

• x0 ∈ RN+ and for each i ∈ N, x0
i is the expected completion time of

activity i.
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• x ∈ RN+ and for each i ∈ N, xi is the actual completion time of activity

i. We assume that x ≥ x0.

• C : RN+→ R+ is the cost function. We assume that C is a nondecreasing

function in each coordinate satisfying that C
(
x0
)

= 0. Given x ∈ RN+ ,
C (x) denotes the cost associated with the delay in the project.

A path γ = {i1, . . . , ip} ⊂ N in P is a collection of activities such that

ik ≺ ik+1 for each k ∈ {1, . . . , p − 1}. Let ΓP be the set of all paths in

P . An expected critical path in P is a path γ0 ∈ ΓP such that
∑

i∈γ0 x
0
i =

maxγ∈ΓP
∑

i∈γ x
0
i . An actual critical path in P is a path γ1 ∈ ΓP such that∑

i∈γ1 xi = maxγ∈ΓP
∑

i∈γ xi.

We define the PERT delay of the project P as d(P ) = maxγ∈ΓP
∑

i∈γ xi−
maxγ∈ΓP

∑
i∈γ x

0
i . We define the delay of activity i ∈ S, di, as the difference

between its actual completion time and its expected completion time, i.e,

di = xi − x0
i ≥ 0.

Typically, the cost function only depends on the PERT delay of the

project i.e. there exists f : R+→ R+ with f(0) = 0 and such that C(y) =

f(d(N,≺, x0, y, C)) for all y ≥ x0.

Example 1 Assume that we have to carry out a project with three activ-

ities. The PERT situation is given by P =
(
N,≺, x0, x, C

)
∈ P where

N = {1, 2, 3}, 1 ≺ 2 and 1 ≺ 3, x0 = (10, 20, 30), x = (20, 40, 40), and

C(x1, x2, x3) = x1 + max{x2, x3} − 40. This situation is depicted in Figure

2.

* * *
1(10, 20)

2(20, 40)

3(30, 40)

Figure 2: Graph of PERT problem with delays.

We note that there is a unique expected critical path γ0 = {1, 3} and

there are two actual critical paths γ1
1 = {1, 2} and γ1

2 = {1, 3}. We obtain

the PERT delay of the project as d(P ) = 60−40 = 20. Note that there exists

a function f : R+ → R+ such that f(t) = t for all t ∈ R+ which generates
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the cost C(x) = 20 + max{40, 40} − 40 = 20 and the delay of each activity

is given by d = (10, 20, 10). Also, note that activity 2 can delay up to 10

without generating delay cost in the project. Moreover, there exists a positive

delay cost of the project when either any activity in γ0 has a positive delay,

activity 2 has a delay greater than 20 or all activities have positive delays.

Given S ⊂ N , we denote ≺S the restriction of ≺ on S, i.e. i ≺S j iff i ≺ j,

for all i, j ∈ S.
We denote the set of PERT problems with delay over a finite set N as

P (N). We also denote the set of all PERT problems with delay as P, i.e.
P =

⋃
N⊂N,|N |<∞ P (N).

A rule is a function φ on P that assigns to each P ∈ P (N) a vector

φ (P ) ∈ RN+ satisfying:

Efficiency (EF )
∑
i∈N

φi (P ) = C (x) and

Null Delay (ND) φi (P ) = 0 when xi = x0
i .

C (x) is the total cost produced by the delay of the project. Given an

activity i ∈ N, φi (P ) represents the amount paid by activity i. Efficiency

says that the total cost must be distributed among the activities involved in

the project. Null delay says that activity i must pay nothing when it has no

delay.

In this paper we restrict to rules satisfying the following properties:

Additivity (AD) if for all pair of problems P =
(
N,≺, x0, x, C

)
and P ′ =(

N,≺, x0, x, C ′
)
,

φ
(
N,≺, x0, x, C + C ′

)
= φ (P ) + φ

(
P ′
)

where (C + C ′) (y) = C (y) + C ′ (y) for all y ≥ x0.

Dummy (DU) if for all P =
(
N,≺, x0, x, C

)
and i ∈ N such that C (y) =

C
(
y/x0

i

)
for all y ≥ x0,

φi (P ) = 0.
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Additivity is a properties that comes naturally in PERT problem situa-

tions. In order to illustrate this property, we consider a house build project.

Since there exits a total delay cost of the project, we can distinguish between

two cost functions that are generated by two different reasons. One of them

is a variable cost C (for example, the rent payment in another house) and

the other one is a fixed cost C ′ (for example, the payment of a contractual

penalty). Assume that activities in N agree that φ is the right solution.

They can proceed in two ways. First, they can apply φ in each of the two

PERT problems with delays given by C and C ′. Second, they can apply φ

only once in the PERT problem with delays with the cost function given by

C + C ′. If both procedures give the same result, we say that φ is additive.

Dummy is another property that comes naturally in PERT problem sit-

uations. When there exists an activity that have a delay independent of the

total delay of the project, this activity pays nothing.

We now define two extreme subclasses of PERT problems with delays.

In the first all the activities are related whereas in the second activities are

unrelated.

We say that P is sequential if activities are lined up, i.e. N = {ik}nk=1

where ik ≺ ik+1 for all k ∈ {1, ..., n− 1}.
We say that P is parallel if activities can be done simultaneously, i.e. for

all i, j ∈ N, i ⊀ j.

The previous PERT problems with delays generalize two well-known

problems of the literature of cost sharing: the serial cost sharing problem

and the airport problem.

Following Moulin and Shenker (1992) a serial cost sharing problem is a

triple (N, q, c) where N is the set of agents, q = (qi)i∈N ∈ RN+ and c : R+ →
R+ is a nondecreasing function satisfying c (0) = 0.

This model has several interpretations. We present the interpretation

based on cost sharing. Each agent i ∈ N demands an amount qi ∈ R+ of a

perfectly divisible good. The total amount required by the agents,
∑

i∈N qi,

is produced. The cost c
(∑

i∈N qi
)
is divided among the agents.

Consider a PERT problem with delays where activities are lined up

and the cost of delaying the project depends only on the total delay of

the project (the difference between the actual completion time and the ex-

7



pected completion time). Formally, P =
(
N,≺, x0, x, C

)
where P is se-

quential and there exists a nondecreasing function c : R+ → R+ such that

C (y) = c
(∑

i∈N (yi − x0
i )
)
for all y ≥ x0.

This PERT problem with delays can be considered as a serial cost sharing

problem where the set of agents are the activities and the demands are the

delays.

Reciprocally, given a serial cost sharing problem (N, q, c), we can asso-

ciate a sequential PERT situation with delays
(
N,≺, x0, x, C

)
where the set

of activities is N either i ≺ j or j ≺ i for all i, j ∈ N , and y = x0 + q for

some x0 ∈ RN , and C (y) = c
(∑

i∈N (yi − x0
i )
)
for all y ≥ x0.

Thus, serial cost sharing problems can be considered as a subclass of se-

quential PERT situations with delay. When we identify a serial cost sharing

problem with a PERT problem with delays we are thinking, in both cases,

in how to divide the cost in a fair way among the agents or activities.

Following Littlechild and Owen (1973), an airport problem is a pair

(N, q, c) where N is the set of agents, q ∈ RN+ , and c : R+ → R+ is a

nondecreasing function satisfying that c (0) = 0. Even though the mathe-

matical model is the same as in serial cost sharing problems, the situation

is different. N represents several kinds of aircraft landings in some airport.

Each aircraft needs, for landing, a runway of length at least qi. We have to

construct a runway of length at least maxi∈N {qi}. When an aircraft lands

in this airport, it must pay a tariff, which depends, among other things, of

the construction cost of the runway. The problem is to determine this part

of the tariff in a fair way.

Consider a PERT problem with delays where activities are parallel and

the cost of delaying the project depends only on the total delay of the project.

Formally, P =
(
N,≺, x0, x, C

)
where P is parallel and there exists a nonde-

creasing function c : R+ → R+ such that C (y) = c
(
maxi∈N

{
yi − x0

i

})
for

all y ≥ x0.

This PERT problem with delays can be considered as an airport problem

where the agents are the activities and the demand of each agent is its delay.

Reciprocally, given an airport problem (N, q, c) we can associate a parallel

PERT problem with delays
(
N,≺, x0, x, C

)
where P is parallel, x − x0 = q

for some x0 ∈ RN , and C (y) = c
(
maxi∈N

{
yi − x0

i

})
for all y ≥ x0.
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Thus, airport problems can be considered as a subclass of PERT problems

with delays.

A cost sharing problem is a triple (N, q, c) where N is the finite set of

agents, q = (qi)i∈N ∈ RN+ and c : RN+ → R+ is a nondecreasing function

satisfying that c (0N ) = 0. Notice that serial cost sharing problems and

airport problems are particular classes of cost sharing problems.

Moreover, cost sharing problems can be considered, from a mathematical

point of view, as a particular subclass of PERT problems with delays. Just

assume that ≺ is empty, i.e. activities are unrelated.

3 The Shapley rule

The Shapley value (Shapley, 1953) is defined for general cooperative games,

but it has been successfully applied to many particular situations, such as

voting games (Shapley and Shubik, 1954), cost sharing problems (Shubik,

1962), serial cost problems (Moulin and Shenker, 1992) and airport landing

problems (Littlechild and Owen, 1973), just to mention a few.

We now introduce a rule for PERT problems with delays based on the

Shapley value.

Given a PERT problem with delays P =
(
N,≺, x0, x, C

)
we associate a

TU game
(
N, vP

)
where vP (S) = C

(
x0/xS

)
for all S ⊂ N . Notice that

vP (S), represents the cost of delaying the project when activities of S have

not delay and activities of S have a delay given by x− x0.

Given P ∈ P we define the Shapley rule ϕ as

ϕ (P ) = Sh
(
N, vP

)
.

It is straightforward to prove that ϕ is a well-defined rule, i.e. it satisfies

EF and ND. Moreover, it also satisfies ADD and DU .

We now introduce some other properties of rules. The first five properties

are quite standard in the literature. The last property is specific of PERT

problems with delays.

Given π ∈ ΠN and y ∈ RN+ we define π (y) ∈ RN+ as the vector where

π (y)i = yi for all i ∈ N . Given P =
(
N,≺, x0, x, C

)
∈ P and π ∈ ΠN ,

we define the PERT problem with delays P π =
(
N,≺π, π

(
x0
)
, π (x) , Cπ

)
9



where i ≺π j iff π (i) ≺ π (j) for all i, j ∈ N , and Cπ (y) = C
(
π−1 (y)

)
for

all y ∈ RN+ .

Anonymity (AN) φ satisfies AN if for all P ∈ P, π ∈ ΠN , and i ∈ N ,

φi (P ) = φπ(i) (P π) .

Anonymity says that cost shares should not depend on the name of

the activities.

Given P =
(
N,≺, x0, x, C

)
∈ P, S ⊂ N and y ∈ RS we define the reduced

problem associated with S and the rule φ as P φ,S =
(
S,≺S , x0

S , xS , C
φ,S
)

where Cφ,S : RS+→ R+ is defined as

Cφ,S (y) = C (x/y)−
∑
i∈S

φi
(
N,≺, x0, x/y, C

)
.

Consistency (CONS) φ satisfies CONS if for all S ⊂ N we have

φS (P ) = φ
(
P φ,S

)
.

Given S ⊂ N , assume that activities in S agree that φ is the right so-

lution. Activities in S can proceed in two ways. First, they can divide

the cost according with φ. Second, they can construct a reduced prob-

lem among themselves assuming that activities in S will pay according

with φ. If both procedures give the same result for activities in S, we

say that φ is consistent.

Consistency is a well-known principle in the literature. See, for instance,

the survey of Thomson (2009).

Monotonicity (MON) φ satisfies MON if for all P =
(
N,≺, x0, x, C

)
,

i ∈ N, and P ′ =
(
N,≺, x0, x/x′i, C

)
with xi ≤ x′i,

φi (P ) ≤ φi
(
P ′
)
.

If the delay of activity i increases, the amount paid by this activity

cannot decrease.
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Given P =
(
N,≺, x0, x, C

)
∈ P and λ ∈ RN++, we define the cost function

Cλ : RN+ → R+ such that Cλ (λy) = C (y) for all y ∈ RN+ , where λy =

(λiyi)i∈N .

Scale Invariance (SI) φ satisfies SI if for all P =
(
N,≺, x0, x, C

)
and

λ ∈ RN++ we have that

φ
(
N,≺, λx0, λx, Cλ

)
= φ

(
N,≺, x0, x, C

)
.

Changing the units in which the delays are measured will not affect

the cost shares.

Standard for Two (ST ) φ satisfies ST if given P =
(
N,≺, x0, x, C

)
where

N has two activities, say i and j,

φi (P ) = C
((
xi, x

0
j

))
+

1

2

(
C ((xi, xj))− C

((
xi, x

0
j

))
− C

((
x0
i , xj

)))
.

Each activity pays the cost caused by its own delay (assuming that

the other has not delay). Moreover, the difference between the total

cost of delaying the project and the sum of the cost caused by both

activities, is divided equally among them.

ST is inspired by the property of standard for two of TU games defined

in Hart and Mas-Colell (1989).

We say that xi ∈ R+ constitutes an irrelevant completion time for activity

i ∈ N for (N,≺, C) if for all x′ ∈ RN+ with x′ ≥ x0,

C
(
x′/xi

)
= C

(
x′/x0

i

)
.

This means that, independently of the delays of the other activities, if

activity i has a delay xi − x0
i , the total cost of the project is the same as if

activity i has not delay.

Independence of Irrelevant Delays (IID) φ satisfies IID if given P =(
N,≺, x0, x, C

)
, i ∈ N, and xi is an irrelevant completion time for

activity i,

φi (P ) = 0.

If the delay of activity i does not affect the total cost of the project,

activity i pays nothing.
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Example 2 We have to carry out a project of two activities (1 and 2), which

can be done independently. The expected completion time of activities 1 and

2 are 10 and 5 respectively. Thus, the total expected time for finishing the

project is 10. Moreover, we have to pay 100 for each unit of time that the

project is delayed. In this example, N = {1, 2}, ≺ is empty, x0 = (10, 5),

and C (x) = 100 (max {x1, x2} − 10). It is not difficult to check that x2 is

an irrelevant completion time for activity 2 when x2 ≤ 10. Assume that

activities 1 and 2 have a delay of 2 and 4, respectively. The cost of delaying

the project is 200. Thus, if a rule satisfies IID, all the cost should be paid

by activity 1.

Some well known rules do not satisfy IID, as we will see later.

Even though IID has the same flavor as ND, they are different proper-

ties. IID implies ND but the reciprocal is not true.

We now prove that the Shapley rule satisfies all the properties mentioned

before.

Theorem 1 The Shapley rule satisfies AN, CONS, MON, SI, ST, and

IID.

Proof. We first prove that ϕ satisfies AN . Take P =
(
N,≺, x0, x, C

)
∈ P,

π ∈ ΠN , P
π, and S ⊂ N . Thus,

vP
π

(π(S)) = Cπ
(
π(x)/π

(
x0
)
S

)
= C

(
x/x0

S

)
= vP (S) .

Since the Shapley value satisfies anonymity in TU games, we conclude that

ϕ satisfies AN .

We now prove that ϕ satisfies CONS. Given P =
(
N,≺, x0, x, C

)
∈ P

and S ⊂ N , we should prove that ϕS (P ) = ϕ
(
Pϕ,S

)
or, equivalently,

ShS
(
N, vP

)
= Sh

(
S, vP

ϕ,S
)
.

Hart and Mas-Colell (1989) proved that if (N, v) is a cooperative game and

S ⊂ N , then ShS (N, v) = Sh (S, vS), where for all T ⊂ S,

vS (T ) = v
(
T ∪ S

)
−
∑
i∈S

Shi
(
T ∪ S, v

)
.
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Hence, it is enough to prove that (vP )S = vP
ϕ,S . Since Sh satisfies efficiency

in TU games, for all T ⊂ S,(
vP
)
S

(T ) =
∑
i∈T

Shi
(
T ∪ S, vP

)
.

Since ϕ satisfies EF and ND,

vP
ϕ,S

(T ) = Cϕ,S
(
x0
S/xT

)
=
∑
i∈S

ϕi
(
N,≺, x0, x/

(
x0
S/xT

)
, C
)

=
∑
i∈S

ϕi

(
N,≺, x0, x/x0

S\T , C
)

=
∑
i∈T

ϕi

(
N,≺, x0, x/x0

S\T , C
)
.

We denote P ′ =
(
N,≺, x0, x/x0

S\T , C
)
. Thus,

vP
ϕ,S

(T ) =
∑
i∈T

Shi

(
N, vP

′
)
.

Now, it is enough to prove that ShT
(
N, vP

′
)

= ShT
(
T ∪ S, vP

)
. We prove

it in two steps.

1. We first prove that ShT
(
N, vP

′
)

= ShT

(
T ∪ S, vP ′

)
. By the carrier

property of the Shapley value (Shapley, 1953), it is enough to prove

that T ∪ S is a carrier for
(
N, vP

′
)
, i.e. vP ′ (R) = vP

′ (
R ∩

(
T ∪ S

))
for all R ⊂ N . Given R ⊂ N ,

vP
′
(R) = C

(
x0/

(
x/x0

S\T

)
R

)
= C

(
x0/x

R∩(S\T )

)
and

vP
′ (
R ∩

(
T ∪ S

))
= C

(
x0/

(
x/x0

S\T

)
R∩(T∪S)

)
= C

(
x0/xR∩(T∪S)

)
.

Since (S \ T ) = T ∪ S, the result holds.

2. We now prove that ShT
(
T ∪ S, vP ′

)
= ShT

(
T ∪ S, vP

)
. We prove

that vP ′ = vP . Given R ⊂ T ∪ S,

vP
′
(R) = C

(
x0/

(
x/x0

S\T

)
R

)
= C

(
x0/xR

)
= vP (R) .

13



We now prove that ϕ satisfies MON . Let P =
(
N,≺, x0, x, C

)
, i ∈ N,

and P ′ =
(
N,≺, x0, x/x′i, C

)
with xi ≤ x′i. Given S ⊂ N, i /∈ S,

vP (S ∪ {i})− vP (S) = C
(
x0/xS∪{i}

)
− C

(
x0/xS

)
≤ C

(
x0/

(
xS , x

′
i

))
− C

(
x0/xS

)
= vP

′
(S ∪ {i})− vP ′ (S) .

Since ϕ (P ) = Sh
(
N, vP

)
and ϕ (P ′) = Sh

(
N, vP

′
)
, ϕ satisfies MON.

We now prove that ϕ satisfies SI. Take P =
(
N,≺, x0, x, C

)
∈ P,

λ ∈ RN++, P λ =
(
N,≺, λx0, λx, Cλ

)
, and S ⊂ N . Thus,

vP
λ

(S) = Cλ
((
λix

0
i

)
i∈S , (λixi)i∈S

)
= C

(
x0/xS

)
= vP (S) .

Now, it is trivial to see that ϕ satisfies SI.

Since ϕ (P ) is the Shapley value of vP , it is trivial to see that ϕ satisfies

ST .

We now prove that ϕ satisfies IID. Given P =
(
N,≺, x0, x, C

)
∈ P , let

xi be an irrelevant completion time for activity i. Assume that S ⊂ N and

i /∈ S. Then,

vP (S ∪ {i}) = C
(
x0/xS∪{i}

)
= C

(
x0/xS

)
= vP (S) .

Since ϕ (P ) = Sh
(
N, vP

)
, ϕ satisfies IID.

Theorem 2 There is a unique rule satisfying AN , CONS, SI, and ST .

Proof. Let φ be a rule satisfying these properties. Fix a PERT problem

with delays P =
(
N,≺, x0, x, C

)
∈ P. We define the partial order ≺∗ in N

such that i ≺∗ j if and only if i, j ∈ N and i ≺ j. Let P ′ be the class of

PERT problems with delays satisfying that P ′ =
(
N ′,≺′, x0′, x′, C ′

)
∈ P ′ if

and only if ≺′N ′=≺∗N ′ , and x0′
i = x0

i for all i ∈ N ∩N ′ and x0′
i = 0 otherwise.

Given P ′ =
(
N ′,≺′, x0′, x′, C ′

)
∈ P ′ we can associate a cost sharing problem

(N ′, q′, c′) where q′i = x′i − x0′
i for all i ∈ N ′ and c′ (q) = C ′

(
x0′ + q

)
for

all q ∈ RN ′+ . Reciprocally, given a cost sharing problem (N ′, q′, c′), we can

associate a PERT problem with delays P ′ =
(
N ′,≺′, x0′, x′, C ′

)
∈ P ′ where

x′i = x0′
i +qi for all i ∈ N∩N ′ and x′i = qi otherwise, and C ′ (y) = c′

(
y − x0′)

for all y ≥ x0′. This correspondence is one-to-one because both ≺′ and x0′

14



are fixed. Thus, we write
(
N ′,≺′, x0′, x′, C ′

)
for PERT problems with delays

and (N ′, q′, c′) for cost sharing problems. We define a rule ψ in cost sharing

problems through φ. For each cost sharing problem (N ′, q′, c′),

ψ
(
N ′, q′, c′

)
= φ

(
N ′,≺′, x0′, x′, C ′

)
.

Consider a cost sharing problem (N ′, x′, C ′) where |N ′| = 2. Since φ satisfies

ST , ψi (N ′, q′, c′)

= C ′
((
q′i + x0′

i , 0
))

+
1

2

(
C ′
(
x′
)
− C ′

((
q′i + x0′

i , x
0′
j

))
− C ′

((
x0′
i , q

′
j + x0′

j

)))
for all i ∈ N ′. Thus, ψ (N ′, q′, c′) = Sh (N ′, v′) where v′ is defined as

v′ ({i}) = C ′
((
x0′
i + q′i, x

0′
j

))
for all i ∈ N ′ and v′ (N ′) = C ′ (x′). This

means that ψ coincides with the Shapley-Shubik rule for cost sharing prob-

lems with two agents. SI, AN and CONS have been defined in cost sharing

problems. The formal definition of these properties can be found, for in-

stance, in Moulin (2002). Since φ satisfies SI, AN, and CONS in PERT

problems with delays, it is not difficult to check that ψ satisfies SI, AN and

CONS in cost sharing problems. By Theorem 5 in Friedman (2004), we

conclude that ψ coincides with the Shapley-Shubik rule. Thus, for each cost

sharing problem (N ′, q′, c′),

ψ
(
N ′, q′, c′

)
= Sh

(
N ′, v(x′,C′)

)
where v(x′,C′) (S) = C ′

(
x0′/x′S

)
. It is trivial to see that v(x′,C′) coincides

with vP
′ where P ′ =

(
N ′,≺′, x0′, x′, C ′

)
. Since ≺′N=≺, we deduce that

φ
(
N,≺, x0, x, C

)
= ψ (N, x,C) = Sh

(
N, vP

)
.

An immediate consequence of Theorems 1 and 2 is that the Shapley rule

is the unique rule satisfying AN , CONS, SI, and ST .

4 Other rules

Friedman and Moulin (1999) introduce the serial cost sharing rule for cost

sharing problems, which is an extension of the serial cost sharing rule intro-

duced by Moulin and Shenker (1992) in serial cost sharing problems. We

define it in PERT problems with delays.
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Given t ∈ R+ we denote tN = (t, ..., t) ∈ RN+ . Given x, y ∈ RN+ , (x ∧ y) is

the vector of RN+ where (x ∧ y)i = min {xi, yi} for all i ∈ N.
For each P =

(
N,≺, x0, x, C

)
∈ P, the serial rule σ is defined as

σi (P ) =

∫ xi−x0i

0
∂iC

((
x0 + tN

)
∧ x
)
dt

for all i ∈ N .

Analogously, the Aumann-Shapley rule α can be defined in PERT prob-

lems with delays as

αi (P ) =
(
xi − x0

i

) ∫ 1

0
∂iC

(
x0 + t

(
x− x0

))
dt

for all i ∈ N .

It is not difficult to check that both σ and α are well defined, i.e. they

both satisfy EF and ND. Moreover, they both satisfy AD and DU .

However, we consider that σ and α are not suitable rules for PERT

problems with delays. We clarify it in Example 3.

Example 3 Consider a problem with two activities, say 1 and 2, which can

be done simultaneously. The expected completion time of the activities are

10 and 4, respectively. The deadline of the project is 10. We must pay a

cost of 100 for each unit of time the project is delayed. Assume that both

activities employ 12. The delay of the project is 2, which means that the

cost is 200. We believe that both activities have the same responsibility and,

hence, both should pay 100. This situation can be modeled as a parallel

PERT problem with delays P = (N,≺, x0, x, C) where N = {1, 2}, ≺= ∅,
x0 = (10, 4), x = (12, 12), and C (x) = 100 (max {x1, x2} − 10). Making

some computations we obtain that σ(P ) = α(P ) = (200, 0), which seems

rather unfair.

Through the paper we assumed that a rule should satisfy EF , ND, AD,

and DU . EF and ND are fundamental properties in PERT problems with

delays, like in cost sharing problems.

Nevertheless, in cost sharing problems there are reasonable rules that

fail AD and DU . We mention two: the axial rule (Sprumont, 1998) and the

average cost pricing rule (Moulin and Shenker, 1994).
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The axial rule requires the cost function to be strictly increasing. Since

this is not the usual case in PERT problems with delays, we conclude that

the axial rule can not be computed for these problems.

Given P =
(
N,≺, x0, x, C

)
∈ P, the average cost pricing rule γ is defined

as

γi (P ) =
xi − x0

i∑
j∈N

(
xi − x0

i

)C (x)

for all i ∈ N .

Example 4 Consider a problem with two activities, say 1 and 2, which can

be done simultaneously. The expected completion time of the activities are

20 and 4 respectively. The deadline of the project is 20. We must pay 100

for each unit of time the project is delayed. Assume that activity 1 em-

ploys 21 and activity 2 employs 13. The delay of the project is one, which

means that the cost is 100. Notice that the project is delayed only because

activity 1 is delayed. We believe that all the cost should be paid by activity

1. This situation can be modeled by a parallel PERT problem with delays

P =
(
N,≺, x0, x, C

)
where N = {1, 2}, ≺= ∅, x0 = (20, 4), x = (21, 13),

and C (x) = 100 (max {x1, x2} − 20). Thus, γ = (10, 90), which seems rather

unfair.

Example 4 also shows that γ does not satisfy IID.

Brânzei et al. (2002) study PERT problems with delays where the cost

function depends on the total delay of the project. They model it as a

bankruptcy problem where the agents are the activities, the claim of each

activity is its delay and the estate is the total delay of the project. They

study, among others, the proportional rule, which coincides with γ. No-

tice that our criticism to γ also holds for any rule arising from bankruptcy

problems.
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