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Abstract

In the knapsack problem a group of agents want to �ll a knapsack
with several goods. Two issues should be considered. Firstly, to decide
optimally the goods selected for the knapsack, which has been studied
in many papers. Secondly, to divide the total revenue among the
agents, which has been studied in few papers (including this one). We
associate to each knapsack problem a cooperative game and we prove
that the core is non-empty. Later, we follow the axiomatic approach.
We propose two rules. The �rst one is based in the optimal solution of
the knapsack problem. The second one is the Shapley value of the so
called optimistic game. We o¤er axiomatic characterizations of both
rules.
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1 Introduction

A mountaineer is planning to do a mountain tour with a knapsack, which has
a limited size. Thus, he should decide which things should take with him in
the knapsack. The idea is to select, given the limited size, the most important
things. This is the so called knapsack problem. It has been applied in
di¤erent real-world decisions. Some examples, see Pisinger and Toth (1998),
are investments (we should decide how to invest a �xed amount of money
between several business projects) and cargo airlines (we should decide how
to ful�ll an airplane given the demand of the costumers). Other examples,
see Bretthauer and Setty (2002), include �nancial models, production and
inventory management, strati�ed sampling, the optimal design of queueing
network models in manufacturing, computer systems, and health care.
The most popular formulation is the so called 0-1 knapsack problem.

There is a �nite number of goods (one unit of each good) and we must decide
which ones are selected for the knapsack. The goods can enter completely
(1) or not enter at all (0). Since the number of goods is �nite, there is an
optimal solution. The �rst issue addressed is the computation of the optimal
solution. Unfortunately, this problem is NP complete. Thus, we should
de�ne algorithms for approximating the optimal solution.
There are more general formulations of the knapsack problem. We men-

tion some of them. The continuous knapsack problem, where we can include
in the knapsack fractions of each good. The bounded knapsack problem
where we can have several copies of each good. The d-dimensional knapsack
problem where we have several constraints (for instance weight and volume)
for ful�ll the knapsack. The multiple knapsack problem where we have sev-
eral knapsacks instead of only one. The multiple choice knapsack problem
where there are several types of objects and we must select one object of
each type. The non-linear knapsack problem where the objective function
and the constraint are non-linear. Again, the main issued addressed by this
literature is how to compute the optimal solution. Pisinger and Toth (1998),
Martello et al (2000), and Kellerer et al (2004) give reviews of this literature.
In many cases the computation of the optimal solution (or the approxima-

tion obtained) is only the �rst part of the problem. The second part is to di-
vide the cost (or bene�ts) among the agents. Whereas the �rst part is mainly
studied in the Operations Research literature, the second part is studied also
in Economics. For instance, in the minimum cost spanning tree problem,
Bird (1976), Kar (2002), Dutta and Kar (2004), Tijs et al (2006), Bergan-
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tiños and Vidal-Puga (2007a), Bogomolnaia and Moulin (2010), and Trudeau
(2012) propose several rules for allocating the cost of the optimal solution
among the agents. Borm et al (2001) give a survey of this literature focusing
on connection problems, routing (Chinese postman and travelling salesman),
scheduling (sequencing, permutation, assignment), production (linear pro-
duction, �ow) and inventory.
As far as we know, Darmann and Klamler (2014) is the only paper in

which this second part is studied in the knapsack problem. They focus in the
continuous knapsack problem, where the optimal solution could be computed
in polynomial time. They consider the following "the goal is to divide the cost
of the optimally packed knapsack among the individuals in a fair manner.
In this paper, we assume that every unit of weight imposes a cost of one,
and therefore the total cost of the knapsack is equal to the weight constraint
W": Then, they de�ne a family of rules, which is characterized with several
properties. Besides, they characterize the rule of the family that divides the
cost associated with each good equally among the agents approving such
good.
Even our paper also consider the second part of the problem, our approach

is di¤erent. Darmann and Klamler (2014) consider the case where agents
either approve or disapprove each good. We consider a more general case
where each agent i has a utility pij for each unit of good j included in the
knapsack. Darmann and Klamler (2014) corresponds to the case where for
each i and j; pij = 1 when agent i approves good j and p

i
j = 0 when agent i

disapproves good j:Moreover, our goal is to divide the total utility generated
by the optimal knapsack among the agents.
Let us clarify the di¤erence between both approaches with a trivial ex-

ample. Consider the knapsack problem with three agents (1, 2, and 3) and
two goods (a and b): The size of the knapsack is 1 and the size of each good
is also 1. Good a is approved by agents 1 and 2 and good b is approved by
agent 3. In our model p1a = p

2
a = p

3
b = 1 and p1b = p

2
b = p

3
a = 0: To include

good a in the knapsack generates a pro�t of 2 (agent 1 and 2 generates a
pro�t of 1 and agent 3 generates 0). To include good b generates a pro�t of
1 (agent 1 and 2 generates a pro�t of 0 and agent 3 generates 1). The opti-
mal solution is to include good a in the knapsack. In Darmann and Klamler
(2014) agents 1 and 2 pays 0:5 and agent 3 pays nothing. This means that
agent 1 and 2 obtain some earnings (the utility they get from good a minus
the amount they pay) whereas agent 3 obtains nothing (he receives nothing
and he pays nothing). In our case agents must decide how to divide the
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utility generated by the optimal solution (2 in this case) among the agents.
Thus, we also consider the possibility that agent 3 is compensated by agents
1 and 2 (because good b is not included) and agent 3 obtains some pro�t.
Actually, one of the allocation we consider, do it.
We assume that a group of agents (N) should decide which goods (from

a set M) to include in a knapsack of �xed size W . Each good j 2 M has a
�xed size wj: Preferences of the agents over the goods are heterogeneous and
modelled by a vector p where for each i 2 N and j 2M; pij 2 R+ denotes the
utility obtained by agent i when a unit of good j is included in the knapsack.
We assume that agents will select the goods maximizing the total utility.
In this paper we follow a cooperative approach and we study how to divide
the total utility among the agents. Thus, we implicitly assume that agents
that include in the knapsack many of "their goods" could compensate to
those agents who include few of "their goods" in order to obtain a more fair
allocation.
In the literature there is a way for associating to each knapsack problem

a cooperative game (see, for instance Kellerer et al (2004)). The value of
a coalition S is de�ned as the utility obtained by agents of this coalition
when the knapsack is ful�lled in the worst way for S: We call this game the
pessimistic game. It is known that the core of this game is non empty and
contains the allocation induced by the optimal solution. We introduce two
alternative cooperative games; the optimistic game and the realistic game.
In the optimistic game the value of a coalition S is de�ned as the utility
obtained by agents of this coalition when the knapsack is ful�lled in the best
way for S: It is easy to see that the core of the optimistic game could be
empty. In the realistic game the value of a coalition S is de�ned as the
utility obtained by agents of this coalition when agents in NnS ful�ll the
knapsack in the best way for NnS. We prove that the realistic game has a
non empty core containing the allocation induced by the optimal solution.
Later on we follow the axiomatic approach. A knapsack rule is a function

that for each knapsack problem selects the goods we include in the knapsack,
and the way in which the total utility generated these goods is divided among
the agents. We introduce several properties of rules and we discuss some re-
lationships between the properties. One of them is core selection, which says
that the allocation should be in the core of the realistic game. Core selec-
tion implies, in several knapsack problems, that some agents could receive
0; which seems a little bit unfair. Thus, we also consider the securement
property (inspired in Moreno-Ternero and Villar (2004)), which guarantees
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to any agent a minimal amount. Securement says that each agent should
receive, at least, 1

n
the amount he will obtain when the knapsack is assigned

to him. Unfortunately there is no rule satisfying both properties. Thus, we
consider two rules one satisfying each of the properties.
We �rst consider the rule induced by the optimal solution. This rule al-

locates to each agent the utility obtained by this agent under the optimal
solution. It satis�es core selection and then fails securement. We present
three characterizations of this rule. In the �rst one we use core selection and
no advantageous splitting. In the second one we use e¢ ciency, maximum as-
pirations, independence of irrelevant goods and composition up. In the third
one we use e¢ ciency, maximum aspirations and no advantageous splitting.
We later consider the Shapley value of the optimistic game, which satis�es

securement but fails core selection. We characterize it with e¢ ciency and
equal contributions.
The rest of the paper is organized as follows. In Section 2 we formally

introduce the knapsack problem. In Section 3 we study the three cooperative
games associated with the knapsack problem. In Section 4 we introduce the
properties, the rules, and the axiomatic characterizations. In Appendix we
present some omitted proofs of our results. Finally, we give the list of the
references.

2 The knapsack problem

In the knapsack problem a set of agents (N) want to include some goods (M)
in a knapsack of size W:
We assume that the set of potential agents is in�nite. Then, there exists

an in�nite set N such that N � N :
We focus in the continuous knapsack problem, where it is assumed that

goods are perfectly divisible. Then we can select fractions of each good to
be included in the knapsack.
A knapsack problem is de�ned as a 5-tuple P = (N;M;W;w; p) where

� N = f1; :::; ng denotes a set of agents.

� M = fg1; :::; gmg denotes the set of goods.
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� W 2 R+ is the size of the knapsack.

� w = fwjgj2M where for each j 2M; wj denotes the size of good j:

� p =
�
pij
	
i2N;j2M where for each i 2 N; j 2 M; pij 2 R+ denotes the

utility that agent i obtains for each unit of good j that is included in
the knapsack.

Darmann and Klamler (2014) consider the case where pij 2 f0; 1g for each
i 2 N; j 2 M: Namely, agents approve or disapprove each good. Thus, our
model is more general.

We introduce some notation used later.
Given S � N; let P S denote the knapsack problem induced by P when the

set of agents is S. Namely P S =
�
S;M;W;w; pS

�
where pS =

�
pij
	
i2S;j2M :

Given T � M; let P T denote the knapsack problem induced by P when
the set of goods is T . Namely P T =

�
N; T;W; (wj)j2T ; p

T
�
where pT =�

pij
	
i2N;j2T :

For each j 2M;
pj =

X
i2N

pij (1)

is a measure of the importance of good j for the set of agents.
Besides, for each S � N and j 2 M; pSj =

X
i2S
pij: Notice that for each

j 2M; pNj = pj:
We say that x = (xj)j2M 2 RM is a feasible solution for P if xj 2 [0; 1]

for each j 2 M and
X
j2M

wjxj = W . For each j 2 M , wjxj is the space

occupied by good j in the knapsack. We denote by FS (P ) the set of feasible
solutions for P:
The interesting case arises when we can not include in the knapsack all

goods, namely, W <
X
j2M

wj: In this case FS (P ) has many points. The case

W �
X
j2M

wj is solved easily by including all goods in the knapsack. That is

xj = 1 for all j 2M:
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Each feasible solution x induces a vector of utilities u (x) = (ui (x))i2N
given by the goods we have included in the knapsack. For each feasible
solution x and each i 2 N;

ui (x) =
X
j2M

pijxj:

The �rst question addressed in the literature (mainly from Operations
Research) is to select the goods to be included in the knapsack in such a way
that the sum of the utilities of the agents is maximized. Formally,

max
x2FS(P )

X
i2N

ui (x) : (2)

In what follows, we assume, without loss of generality, that the goods are
sorted in such a way that

p1
w1
� ::: � pm

wm
:

This problem has at least one optimal solution. One of them is x� (P ) =�
x�j (P )

	
j2M de�ned as

x�j (P ) :=

8>>><>>>:
1 if j = 1; :::; s� 1

1

ws

 
W �

s�1X
k=1

wk

!
if j = s

0 if j = s+ 1; :::m

(3)

where s is de�ned by

s�1X
k=1

wk < W �
sX
k=1

wk:

When no confusion arises we write x� instead of x� (P ) : We will denote
by X�(P ) (or X�) the set of all optimal solutions in P:

If we assume that p1
w1
> ::: > pm

wm
; we can guarantee that the previous

problem has a unique optimal solution.
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We denote by P the class of all knapsack problems and by P� the class
of knapsack problems where p1

w1
> ::: > pm

wm
.

We assume that agents decide the goods to be included in the knapsack.
They also decide the way in which the total utility generated by the selected
goods is divided among them.
For any problem P the set of feasible allocations is de�ned as

FA (P ) =

(
(yi)i2N 2 RN+ :

X
i2N

yi =
X
i2N

ui (x) for some x 2 FS (P )
)
:

3 Knapsack cooperative games

In this section we associate with each knapsack problem the cooperative
games with transferable utility called: pessimistic, optimistic and realistic.
We study the core of such games. The core of the pessimistic and realistic
game are always non empty whereas the core of the optimistic game could
be empty.

A cooperative game with transferable utility (brie�y, a TU game)
is a pair (N; v) where v : 2N ! R satis�es v (?) = 0: When no confusion
arises we write v instead of (N; v) :
The core of a TU game (N; v) is de�ned as

c (v) =

(
x 2 RN :

X
i2N

xi = v (N) and for each S � N;
X
i2S
xi � v (S)

)
:

We �rst associate with each problem P several cooperative games, de-
pending on the way we de�ne the value of a coalition S:

In the pessimistic approach we assume that the knapsack is ful�lled in
the worst way for S: Formally, for each knapsack problem P we de�ne the
game (N; vpP ) where for each S � N;

vpP (S) = min
x2FS(P )

X
i2S
ui (x) :
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When no confusion arises we write vp instead of vpP :

In the optimistic approach we assume that agents in S can ful�ll the
knapsack the way they want. Formally, for each knapsack problem P we
de�ne the game (N; voP ) where for each S � N;

voP (S) = max
x2FS(P )

X
i2S
ui (x) :

When no confusion arises we write vo instead of voP :

In the realistic approach we assume that agents in NnS ful�ll the knap-
sack in the best way for them and then agents in S optimize the space of the
knapsack left by N=S. Let X�NnS the set of optimal solutions of the problem
PNnS: For each knapsack problem P we de�ne the game (N; vrP ) where for
each S � N;

vrP (S) = max
x2X�NnS

X
i2S
ui (x) :

When no confusion arises we write vr instead of vrP :

Remark 1 It is obvious that for each problem P and each S � N; vp(S) �
vr(S) � vo(S) and vp(N) = vr(N) = vo(N). Then,

c(N; vo) � c(N; vr) � c(N; vp):

Example 1 Let P be such that N = f1; 2; 3g, M = fa; b; cg, W = 2 and
wj = 1 for all j 2M: Besides the vector p satis�es the following conditions.

� Agent 1 is interested in good a but not in the others. Namely, p1a > 0
and p1j = 0 otherwise.

� Agents 2 and 3 prefer b to c and they are not interested in good a: Fur-
thermore, they prefer good c more that agent 1 prefer good a: Namely,
for each agent i 6= 1, pib > pic > p1a and pia = 0:

� Agent 2 is more interested in objects of Mn fag than agent 3. Namely,
p2j > p

3
j ; for each j 2 fb; cg :
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We now compute the three games. We detail the computation for coalition
f2; 3g. The worst feasible solution for agents 2 and 3 is to include goods a
and c: Thus, vp (2; 3) = p2c + p

3
c : The best feasible solutions for agent are

fag ; fa; bg ; and fa; cg : Among them agents 2 and 3 prefer fa; bg. Then,
vr (2; 3) = p2b + p

3
b : The best feasible solution for agents 2 and 3 is to select

goods b and c: Then, vo (2; 3) = p2b + p
3
b + p

2
c + p

3
c :

T vp (T ) vr (T ) vo (T )
f1g 0 0 p1a
f2g p2c p2b + p

2
c p2b + p

2
c

f3g p3c p3b + p
3
c p3b + p

3
c

f1; 2g p1a + p
2
c p2b + p

2
c p2b + p

2
c

f1; 3g p1a + p
3
c p3b + p

3
c p3b + p

3
c

f2; 3g p2c + p
3
c p2b + p

3
b p2b + p

3
b + p

2
c + p

3
c

N p2b + p
3
b + p

2
c + p

3
c p2b + p

3
b + p

2
c + p

3
c p2b + p

3
b + p

2
c + p

3
c

The core of the pessimistic game vp is non empty and contains u (x�) for
all x� 2 X� (see, for instance, Kellerer et al: (2004)).

The core of the optimistic game vo could be empty as next example shows.

Example 2 Let P be such that N = f1; 2g ; M = fa; bg ; W = 1; wa =
wb = 1; p

1
a = 1; p

2
b = 0:9 and p

1
b = p

2
a = 0: Now v

o (1) = 1; vo (2) = 0:9; and
vo (1; 2) = 1. Thus, c (vo) = ?:

We now prove that the core of the realistic game vr is non-empty because
u (x�) belongs to such core.

Theorem 1 For each knapsack problem P; u (x0) 2 c (vr) for all x0 2 X�:

Proof. Let P be a problem and x0 2 X� such that u (x0) =2 c(vr): Then, it
exists S � N such that vr(S) >

X
j2M

pSj x
0
j:

Let x 2 X�NnS be such that

vr(S) =
X
j2M

pSj xj >
X
j2M

pSj x
0
j
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As x 2 X�NnS;
X
j2M

p
NnS
j xj �

X
j2M

p
N=S
j x0j: Then,

X
i2N

ui (x) =
X
i2N

X
j2M

pijxj =
X
j2M

pSj xj +
X
j2M

p
N=S
j xj >

X
j2M

pSj x
0
j +

X
j2M

p
N=S
j x0j

=
X
j2M

pjx
0
j = max

x2S(P )

X
i2N

ui (x) ;

which is a contradiction.

The next example shows that the core of vr could have more points.

Example 3 Let P be such that N = f1; 2; 3g; M = fa; b; c; dg, W = 5,
wa = wb = wd = 2, wc = 1; p1d = 0:7; p1a = p1b = p1c = 0, p2a = p2b = 1;
p2c = p

2
d = 0, p

3
a = 1; p

3
b = 0:9, p

3
c = 0:8; and p

3
d = 0: Then, pa = 2; pb = 1:9;

pc = 0:8, pd = 0:7;

pa
wa
=
2

2
>
pb
wb
=
1:9

2
>
pc
wc
=
0:8

1
>
pd
wd
=
0:7

2
:

The optimal solution is x� = (1; 1; 1; 0) : Namely, we include in the knap-
sack a; b and c: Now u (x�) = (0; 2; 2:7) :
vr (1) = 0; vr (2) = 2; vr (3) = 1:9; vr (1; 2) = 2; vr (1; 3) = 2:7; vr (2; 3) =

3:45; and vr (N) = 4:7: Then vr has many core elements di¤erent from u (x�) :
For instance, (0:7; 2; 2) :

4 Knapsack rules and properties

In this section we introduce several properties of rules. We discuss some
relationships between the properties. Core selection says that we must select
an allocation in the realistic core. Rules selecting allocations in the core could
be unfair because agents who want not very demanded goods (those with pj

wj

small) could receive zero. Thus, we consider the property of securement,
which says that each agents must receive a minimum amount. Unfortunately
no rule satisfy both properties.
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We then introduce two rules. The �rst one, based in the optimal solution,
satis�es core selection. The second one, based in the Shapley value, satis�es
securement. We study the properties satis�ed by each rule. Besides we
provide several axiomatic characterizations of both rules.

A rule is a function f assigning to each problem P a pair f (P ) =
(f 1 (P ) ; f2 (P )) where f 1 (P ) 2 FS (P ) and

P
i2N

f 2i (P ) =
X
i2N

ui (f
1 (P )) :

Notice that f 1 (P ) denote the goods we include in the knapsack and f 2 (P )
denotes the way in which the total utility generated by f 1 (P ) is divided
among the agents.

We now introduce several properties of rules and we discuss some rela-
tionships between the properties.

E¢ ciency says that f 2 (P ) the vector of allocations proposed by f is not
Pareto dominated in the set of feasible allocations FA (P ).
E¢ ciency (ef). For each problem P;

P
i2N

f 2i (P ) = max
x2FS(P )

X
i2N

ui (x) :

In P e¢ ciency says that f 1 (P ) 2 X�. In P� e¢ ciency means that
f 1 (P ) = x�:

Symmetry says that if two agents give the same utility to each good, then
both receive the same allocation.
Symmetry (sym). For each problem P and each i; i0 2 N such that

pi = pi
0
; then f 2i (P ) = f

2
i0(P ):

If the valuation of agent i to some goods increases, then the allocation to
agent i can not decrease.
Monotonicity (mon). Consider two problems P = (N;M;W;w; p) and

P 0 = (N;M;W;w; p0) such that there exists i 2 N satisfying p0ij � pij for all
j 2M and p0kj = p

k
j for all j 2M and k 2 Nn fig : Then, f 2i (P 0) � f 2i (P ) :

Dummy says that if some agent is not interested in any good, then he
receives nothing.
Dummy (dum). For each problem P and each i 2 N such that pij = 0

for each j 2M; then f 2i (P ) = 0:

Core selection says that the allocation proposed by the rule (f 2 (P ))
should belong to the core of the problem. In this case, we select the core
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of the realistic game because we �nd it the more suitable for this class of
problems.
Core selection (cs). For each problem P; f2 (P ) 2 c (vr) :
It is clear that core selections implies e¢ ciency.

Assume that we remove a good not selected by the optimal solution, then
the rule does not change. This property is inspired in the well known principle
of independence of irrelevant alternatives (used, for instance, in bargaining
problems by Nash (1950)).
Independence of irrelevant goods (iig). Let P be a problem and

j 2 M satisfying that xj = 0 for any optimal solution x: Then, f (P ) =
f
�
PMnfjg� :
Composition up says that we can ful�ll the knapsack in one step or, �rst

ful�ll some part of the knapsack and later the remaining. This property has
been used in several economics problems. See for instance the surveys of
Thomson (2003, 2015) about bankruptcy problems. Darmann and Klamler
(2014) also uses this property.
For each problem P = (N;M;W;w; p) ; W1 � W and x 2 [0; 1]M we

de�ne the problems

P (W1) = (N;M;W1; w; p) and

P (W �W1; x) = (N;Mx;W �W1; wx ; px)

where

Mx = fj 2M : xj < 1g ;
(wx)j = wj (1� xj) for each j 2Mx; and

(px)
i
j = pij for each i 2 N and j 2Mx:

Composition up (cu). For each problem P and each W1 � W ,

f 1j (P ) = f 1j (P (W1)) + f
1
j

�
P
�
W �W1; f

1 (P (W1))
��
for all j 2M and

f 2i (P ) = f 2i (P (W1)) + f
2
i

�
P
�
W �W1; f

1 (P (W1))
��
for all i 2 N:

We now introduce two properties closely related. Actually in several
papers both properties appear as a single one. No advantageous merging
means that no group of agents has incentives to pool their utility and to
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present themselves as a single agent. No advantageous splitting means that
no agent has incentives to divide his utility and to present himself as a group
of agents.

No advantageous merging (nam). For each problems P = (N;M;W;w; p)
and P 0 = (N 0;M;W;w; p0) where N � N 0 and there exists i 2 N such that
pi = p0i +

P
k2N 0nN

p0k and pk = p0k for all k 2 N 0nN;

f 2i (P
0) +

X
k2N 0nN

f 2k (P
0) � f 2i (P ) :

No advantageous splitting (nas). For each problems P = (N;M;W;w; p)
and P 0 = (N 0;M;W;w; p0) where N � N 0 and there exists i 2 N; pi =
p0i +

P
k2N 0nN

p0k and pk = p0k for all t 2 N 0nN;

f 2i (P
0) +

X
k2N 0nN

f 2k (P
0) � f 2i (P ) :

Darmann and Klamler (2014) consider the property of pairwise merge-
and-split-proofness which is related, in the motivation, with nam and nas:
Both properties are inspired in the property of strategy-proof introduced in
O�Neill (1982). Actually we de�ne it in the same way as they appear in
Thomson (2003, 2015). There are two di¤erences between pairwise merge-
and-split-proofness and nam+nas. First, when an agent is divided in several
ones (or several ones join in a single agent), in Darmann and Klamler (2014)
each agent must approve di¤erent goods. Since our model is more general
we allow that di¤erent agents approve the same good. Second, in Darmann
and Klamler (2014) the property says that agents who do not merge or split
should not be a¤ected. In our case (as in the bankruptcy problem) we say
that agents that merge or split do not improve.

The idea of the following property is to give an upper bound to the amount
received by each agent. In our case, each agent could receive, at most, the
amount he will receive when he can use the whole knapsack.
For each problem P and each i 2 N we de�ne themaximum aspiration

of agent i as MAi (P ) = max
x2FS(P )

ui (x) : Notice that MAi (P ) = vo (i) :
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Maximum aspirations (ma) : For each problem P and each i 2 N;
f 2i (P ) �MAi (P ) :

The idea of the following property is dual of the previous one, is to guar-
antee to each agent a minimum amount. In our case, each agents should
receive at least 1

n
the amount he will obtain when the knapsack is assigned

to him. This property is inspired in the securement property introduced by
Moreno-Ternero and Villar (2004) for bankruptcy problems.
For each problem P and each i 2 N we de�ne the secure allocation of

agent i as

SEi (P ) =
1

n
max

x2FS(P )
ui (x) :

Notice that SEi (P ) =
vo(i)
n
:

Securement (se) : For each problem P and each i 2 N; f 2i (P ) �
SEi (P ) :

Equal contributions is a principle widely used in the literature since My-
erson (1980) introduced it in TU games. It says that if agent i leaves the
problem the change in the allocation of agent j coincides with the change in
the allocation to agent j when agent i leaves the problem.
Equal contributions (ec). For each problem P and each i; k 2 N;

f 2i (P )� f 2i
�
PNnfkg

�
= f 2k (P )� f 2k

�
PNnfig

�
:

All the previous properties can be considered desirable for a rule, but
clearly we could have incompatibility between them. For example, if we re-
strict our attention to rules satisfying core selection (securement) we must
leave o¤ securement (core selection) because both properties are incompati-
ble. We also prove that, under dummy and e¢ ciency, independence if irrel-
evant goods and securement are incompatible. In the next proposition we
study these relations between the properties.

Proposition 1 (1) There is no rule satisfying core selection and securement.
(2) Let f be a rule satisfying dummy and e¢ ciency. Then, f does not

satisfy independence of irrelevant goods and securement.
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Proof. (1) Let f be a rule satisfying cs and se: Consider Example 1. For
each i 2 Nn f1g ; vr (i) =

P
j2M

pijx
�
j = ui (x

�) because x�Nnfig = x� = (0; 1; 1) :

Now,
vr (N) =

X
i2N

ui (x
�) =

X
i2Nnf1g

X
j2M

pijx
�
j =

X
i2Nnf1g

vr (i) :

Then, c (vr) = (ui (x
�))i2N : Since f satis�es cs; f

2
1 (P ) = u1 (x

�) = 0:

Since f satis�es se; f 21 (P ) � SE1 (P ) =
p1a
3
, which is a contradiction.

(2) Consider Example 2. Then, SE1 (P ) = 0:5, SE2 (P ) = 0:45 and x� =
(1; 0) : If f satis�es ef and iig; f22 (P ) = f 22

�
P fag

�
: Since f satis�es dum;

f 22
�
P fag

�
= 0: Then, f 22 (P ) = 0: If f satis�es se we have that f2 (P ) � 0:45;

which is a contradiction.

Core selection is a quite standard property in the literature. It would be
nice for an allocation to be in the core. Nevertheless, the allocations in the
core could be very unfair. In the knapsack problem it could also happen. For
instance, in Example 1 we have only one core allocation, which gives 0 to
agent 1. Thus, if we try to �nd a fair allocation sometimes is better to look
outside the core. For instance, in TU games, the Shapley value, the most
popular fair allocation, could be outside the core.
We think that securement is a nice fairness property because it guarantees

that all non-dummy agents will receive something. For instance, in Example
1 it says that agent 1 will receive something.
By Proposition 1 core selection and securement are incompatible. Since

we consider both properties very interesting, we will study two rules in the
paper. One satisfying core selection and the other satisfying securement.

4.1 The rule induced by the optimal solution

In this section we study a rule satisfying core selection. We focus in the
rule induced by the optimal solution to the knapsack problem. We �ll the
knapsack in the optimal way and each agent receives the utility given by
the knapsack. Namely, there is no transfers among the agents. Since in a
general knapsack problem we can have several optimal solutions, we restrict
our study to P�; where the optimal solution is unique and then well de�ned.
Notice that from an strict mathematical point of view our restriction is not
important because the measure of PnP� in P is zero. We study the properties
satis�ed by this rule and we give several axiomatic characterizations.
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Given P 2 P�, let x� denote the unique optimal solution of P . Making
an abuse of notation we denote the rule induced by x� also as x�: Namely,
let x� be the rule de�ned as x�1 (P ) = x� and x�2i (P ) = ui (x

�) for all i 2 N:
The optimal solution has been used by Darmann and Klamler (2014) for

de�ning a rule in his model. The cost associated with each good, selected
by the optimal solution, is divided equally among the agents approving such
good.

We now study the properties of rule x�:

Proposition 2 (1) The rule x� satis�es e¢ ciency, symmetry, monotonicity,
dummy, core selection, independence of irrelevant goods, composition up, no
advantageous merging, no advantageous splitting, and maximum aspirations.
(2) The rule x� does not satisfy securement and equal contributions.

The proof is in Appendix.

In the next theorem we give several axiomatic characterizations of the
optimal rule.

Theorem 2 (1) x� is the unique rule satisfying core selection and no advan-
tageous splitting.
(2) x� is the unique rule satisfying e¢ ciency, independence of irrelevant

goods, composition up, and maximum aspirations.
(3) x� is the unique rule satisfying e¢ ciency, no advantageous splitting,

and maximum aspirations.
Besides, the properties used in the previous characterizations are inde-

pendent.

The proof is in Appendix.

Remark 2 If we check the proof of (1) in Theorem 2 we realize that we
can replace core selection by e¢ ciency and individual rationality (for each
problem P; each agent i 2 N must receives at least vrP (i)):
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4.2 The rule induced by the Shapley value

In this section we study a rule satisfying securement. We �ll the knapsack in
the optimal way and each agent receives the utility given by Shapley value of
the optimistic game associated with the knapsack problem1. In this section
we consider the set of all problems P : We study the properties satis�ed by
this rule and we give an axiomatic characterizations.

The Shapley value of a game (N; v) (Shapley, 1953) is denoted by
Sh (v) : For each i 2 N we have that

Shi (v) =
X

S�Nnfig

s! (n� s� 1)!
n!

(v (S [ fig)� v (S)) :

Given P 2 P, let x� denote an optimal solution of P . We de�ne the
optimistic Shapley rule, denoted by Sho; as the rule indued by the Shap-
ley value of the optimistic game. Namely, Sho1 (P ) = x� and Sho2 (P ) =
Sh (voP ) :

We now study the properties satis�ed by the optimistic Shapley rule.

Proposition 3 (1) The optimistic Shapley rule satis�es e¢ ciency, symme-
try, monotonicity, dummy, maximum aspirations, securement, and equal con-
tributions.
(2) The optimistic Shapley rule does not satisfy core selection, indepen-

dence of irrelevant goods, composition up, no advantageous merging and no
advantageous splitting.

The proof is in Appendix.
We now give a characterization of Sho:

Theorem 3 The optimistic Shapley rule is the unique rule satisfying e¢ -
ciency and equal contributions.
Besides, the properties are independent.

The proof is in Appendix.

1There are other papers where the it is studied the Shapley value of the optimisitic
game. For instance Bergantiños and Vidal-Puga (2007b) study it in minimum cost span-
ning tree problems.
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5 Appendix: Proofs of the results

Proof of Proposition 2. (1) It is obvious that x� satis�es ef; sym; mon;
dum; iig; and ma:
We now prove that x� satis�es cu: We know that there exists s 2 N such

that x�1j (P ) = 1 for all j < s; 0 < x
�1
s (P ) � 1; and x�1j (P ) = 0 for all j > s:

Let P and W1 � W: Then, it exists t � s such that x�1j (P (W1)) = 1 for all
j < t; 0 < x�1t (P (W1)) � 1; and x�1j (P (W1)) = 0 for all j > t:
Assume that x�1t (P (W1)) < 1 and t < s (the other cases are simi-

lar and we omit it). Then Mx�1(P (W1)) = ft; :::;mg ;
�
wx�1(P (W1))

�
t
< wt,�

wx�1(P (W1))

�
j
= wj for all j > t; and the values of p and px�1(P (W1)) coincide.

Thus,�
px�1(P (W1))

�
t�

wx�1(P (W1))

�
t

=
pt�

wx�1(P (W1))

�
t

>
pt
wt
>
pt�1
wt�1

=

�
px�1(P (W1))

�
t�1�

wx�1(P (W1))

�
t�1

>

> ::: >
pm
wm

=

�
px�1(P (W1))

�
m�

wx�1(P (W1))

�
m

:

Now it is obvious that x�1t (P (W �W1; x
�1 (P (W1)))) = wt�

�
wx�1(P (W1))

�
t

and x�1j (P (W �W1; x
�1 (P (W1)))) = x

�1
j (P (W1)) for all j > t: Then,

x�1j (P ) = x
�1
j (P (W1)) + x

�1
j

�
P
�
W �W1; x

�1 (P (W1))
��
for all j 2M .

Because of the previous expression and the de�nition of f 2 it is obvious
that

x�2i (P ) = x
�2
i (P (W1)) + x

�2
i

�
P
�
W �W1; x

�1 (P (W1))
��
for all i 2 N:

Then x� satis�es cu:
By Proposition 1, x� satis�es core selection.
Let P and P 0 be as in the de�nition of nam and nas: Since pj = p0j for

all j 2M; x�1(P ) = x�1(P 0) and

x�2i (P
0) +

P
k2N 0nN

x�2k (P
0) =

P
j2M

p0ij x
�1
j (P

0) +
P
j2M

P
k2N 0nN

p0kj x
�1
j (P

0)

=
P
j2M

P
k2N 0nN

(p0ij + p
0k
j )x

�1
j (P

0)

=
P
j2M

pijx
�1
j (P )

= x�2i (P ):
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Thus, x� satis�es nam and nas:
(2) Consider the problem given by Example 2. Thus, x1� (P ) = (1; 0) ;

x2� (P ) = (x�21 (P ); x
�2
1 (P )) = (1; 0) ; SE2 (P ) = 0:45; x�

�
P f1g

�
= 1; and

x�
�
P f2g

�
= 0:9: Thus, x� does not satisfy se and ec:

Proof of Theorem 2. (1) By Proposition 2, x� satis�es both properties.
We now prove the uniqueness. Let f be a rule satisfying cs and nas:
Given a problem P; we know that there exists s 2 N such that x�1j (P ) = 1

for all j < s; 0 < x�1s (P ) � 1; and x�1j (P ) = 0 for all j > s and
p1
w1
> ::: >

ps
ws
>
ps+1
ws+1

:::

Let i be in N: We take hi 2 N such that

(1� 1
hi
)pi1 +

P
k2N : k 6=i

pk1

w1
> ::: >

(1� 1
hi
)pis +

P
k2N : k 6=i

p2s

ws
>

(1� 1
hi
)pis+1 +

P
k2N : k 6=i

p2s+1

ws+1
:::

(4)
LetN � N 0 such that jN 0nN j = hi�1:We consider P 0 = (N 0;M;W;w; p0)

such that p0i = pi

hi
; p0k = pi

hi
for all k 2 N 0nN and p0k = pk for all k 2 N=fig:

By nas;
f 2i (P ) � f 2i (P 0) +

X
k2N 0nN

f 2k (P
0) : (5)

Furthermore, by (4),

vrP 0(i) =
u1 (x

�(P ))

hi
and vrP 0(k) =

u1 (x
�(P ))

hi
for all k 2 N 0nN:

By cs;

f 2i (P
0) � u1 (x

�(P ))

hi
and f 2k (P

0) � u1 (x
�(P ))

hi
for all k 2 N 0nN:

By (5),
f 2i (P ) � ui (x�(P )) : (6)

As (6) holds for all i 2 N; by ef;

f 2i (P ) = ui (x
�(P )) for all i 2 N:

(2) By Proposition 2, x� satis�es the four properties.
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We now prove the uniqueness. Let f be a rule satisfying the four proper-
ties. Since f satis�es ef , f 1 (P ) = x�:
Let s be such that f 1j (P ) = 1 for all j < s; 0 < f

1
s (P ) � 1; and f 1j (P ) = 0

for all j > s:
We take W1 = w1: By cu;

f 1j (P ) = f 1j (P (w1)) + f
1
j

�
P
�
W � w1; f1 (P (w1))

��
for all j 2M and

f 2i (P ) = f 2i (P (w1)) + f
2
i

�
P
�
W � w1; f1 (P (w1))

��
for all i 2 N:

By ef;

f 1j (P (w1)) =

�
1 if j = 1
0 otherwise

By iig
f (P (w1)) = f

�
P (w1)

f1g
�
:

For each i 2 N , MAi
�
P (w1)

f1g
�
= pi1: By ma f

2
i

�
P (w1)

f1g
�
� pi1 for

each i 2 N: By ef ,
P
i2N

f 2i

�
P (w1)

f1g
�
=
P
i2N

pi1: Thus,

f 2i (P (w1)) = f
2
i

�
P (w1)

f1g
�
= pi1 for each i 2 N:

We now apply cu to problem P (W � w1; f1 (P (w1))) by takingW1 = w2:
Let us make an abuse of notation and denote by P (w2) the �rst problem given
by cu and by P (W � w1 � w2) the second one. Using arguments similar to
those used for P (w1) we can deduce. that

f 1j (P (w2)) =

�
1 if j = 2
0 otherwise

f 2i (P (w2)) = pi2 for each i 2 N:

If we continue to apply cu we obtain that

f 1j (P ) =

s�1X
j=1

f 1j (P (wj)) + f
1
j

 
P

 
W �

s�1X
j=1

wj

!!
for all j 2M and

f 2i (P ) =
s�1X
j=1

f 2i (P (wj)) + f
2
i

 
P

 
W �

s�1X
j=1

wj

!!
for all i 2 N:

21



where for each j = 1; :::; s� 1;

f 1j0 (P (wj)) =

�
1 if j0 = j
0 otherwise

f 2i (P (wj)) = pij for each i 2 N:

and

f 1j

 
P

 
W �

s�1X
j=1

wj

!!
=

�
x1s (P ) if j = s
0 otherwise

f 2i

 
P

 
W �

s�1X
j=1

wj

!!
= pisf

1
s (P ) for each i 2 N:

Thus, f 1 (P ) = x� and for each i 2 N;

f 2i (P ) =
s�1X
j=1

f 2i (P (wj)) + f
2
i

 
P

 
W �

s�1X
j=1

wj

!!

=
s�1X
j=1

pij + p
i
sf
1
s (P ) =

s�1X
j=1

pijx
�1
j (P ) + p

i
sx
�1
s (P )

= ui (x
�) :

(3) By Proposition 2, x� satis�es the properties.
We now prove the uniqueness by induction on n; the number of agents.

Let f be a rule satisfying ef; ma and nas:
When n = 1; by ef; f 1 (P ) = x� and f 21 (P ) = u1 (x

�) :
We assume that N = f1; 2g: Given a problem P; let s be as in the

de�nition of the optimal solution x� given by 3. Since P 2 P�;

p11 + p
2
1

w1
> ::: >

p1s + p
2
s

ws
>
p1s+1 + p

2
s+1

ws+1
:::

Now, let d1 2 N such that

p11 + (1� 1
d1
)p21

w1
> ::: >

p1s + (1� 1
d1
)p2s

ws
>
p1s+1 + (1� 1

d1
)p2s+1

ws+1
::: (7)
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LetN � N 0 be such that jN 0nN j = d1�1:We consider P 0 = (N 0;M;W;w; p0)

such that p01 = p1; p02 = p2

d1
and p0k = p2

d1
for all k 2 N 0nN: By nas;

f 22 (P
0) +

X
k2N 0nN

f 2k (P
0) � f 22 (P ) : (8)

By ef;
f 21 (P ) � f 21 (P 0) : (9)

Now, let P 00 = (N 00;M;W;w; p00) such that N 00 = f1; 2g and p001 = p01 +P
k2N 0nN

p0k and p002 = p02 = p2

di
:

Notice that P 0 is obtained from P 00 when agent 2 in P 00 split in agents
f2g [ (N 0nN) : By nas;

f 21 (P
0) +

X
k2N 0nN

f 2k (P
0) � f 21 (P 00) : (10)

By (7),
MA1(P

00) = u1 (x
�(P 00)) :

By ma;

f 21 (P
00) �MA1(P 00) = u1 (x

�(P 00))
=
P
j2M

p001j x
�
j(P

00)

=
P
j2M

p1jx
�
j(P

00) +
P
j2M

P
k2N 0nN

p0kx�j(P
00)

=
P
j2M

p1jx
�
j(P

0) +
P
j2M

P
k2N 0nN

p0kx�j(P
0)

= u1 (x
�(P 0)) +

P
k2N 0nN

uk (x
�(P 0)) :

(11)

By (10) and (11),

f 21 (P
0) +

X
k2N 0nN

f 2k (P
0) � u1 (x�(P 0)) +

X
k2N 0nN

uk (x
�(P 0)) : (12)

By (12) and ef ,
f 22 (P

0) � u2 (x�(P 0)) : (13)
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Similarly, if we take �k 2 N 0nN and consider P 000 = (N 000;M;W;w; p000) such
that N 00 = f1; �kg and p0001 = p01 + p02 +

P
k2N 0n(N[f�kg)

p0k and p000�k = p02 = p2

di
; it

can be proved that
f 2�k (P

0) � u�k (x�(P 0)) : (14)

Then,
f 2k (P

0) � uk (x�(P 0)) for all k 2 N 0nN: (15)

By (12) and (15),
f 21 (P

0) � u1 (x�(P 0)) : (16)

By (9) and since x� (P ) = x� (P 0) and p1 = p01;

f 21 (P ) � u1 (x�(P )) :

Similarly it can be proved that

f 22 (P ) � u2 (x�(P )) :

By ef;
f 2i (P ) = ui (x

�(P )) for all i 2 N:
We now consider the case n � 3: Assume that the result is true when we

have less than n agents and we prove it for n:
We �rst prove that for any P 2 P� and any pair of agents i; k 2 N (i 6= k)

f 2i (P ) + f
2
k (P ) � ui (x�(P )) + uk (x�(P )) : (17)

We de�ne P+ = (N+;M;W;w; p+) such that N+ = Nnfkg and p+i =
pi + pk and p+t = pt for all t 2 N+n fig : By induction hypothesis

f 2t
�
P+
�
= ut

�
x�(P+)

�
for all t 2 N+: (18)

By nas;
f 2i (P ) + f

2
k (P ) � f 2i

�
P+
�
: (19)

By (18) and (19)

f 2i (P ) + f
2
k (P ) � ui

�
x�(P+)

�
= ui (x

�(P )) + uk (x
�(P )) : (20)
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Fix i 2 N; by 17P
k2Nnfig

[f 2i (P ) + f
2
k (P )] �

P
k2Nnfig

[ui (x
�(P )) + uk (x

�(P ))],

(n� 1)f 2i (P ) +
P

k2Nnfig
f 2k (P ) � (n� 1)ui (x�(P )) +

P
k2Nnfig

uk (x
�(P )),

(n� 2)f 2i (P ) +
P
k2N

f 2k (P ) � (n� 2)ui (x�(P )) +
P
k2N

uk (x
�(P )) :

(21)
By ef and since n � 3;

f 2i (P ) � ui (x�(P )) : (22)

Since (22) holds for all i 2 N and ef;

f 2i (P ) = ui (x
�(P )) :

We now prove that the properties used in the previous characterization
are independent.
(1) Let �P be the problem in Example (3). Let f � be such that f �1 (P ) = x�

for each problem P . Besides, f �2 (P ) = x�2(P ) if P 6= �P and f 2
�
�P
�
=

(0:7; 2; 2) : This rule satis�es cs; but fails nas:
Let f be such that f1 (P ) = x� for each problem P: Besides, the total

utility given by each good j is divided among the agents proportionally to
the utility that each agent gives to the goods in x�:Namely, given i 2 N and
j 2M we de�ne:

yij =

P
x�k>0

pikP
i2N

P
x�k>0

pik
pjx

�
j

f2i (P ) =
X
j2M

yij:

This rules satis�es nas but fails cs:
(2) Let f 0 be the rule that selects no good and allocates 0 to each agent.

This rule satis�es ma; iig and cu but fails ef:
Let f� be such that f�1 (P ) = x� for each problem P: Besides, the total

utility given by each good is divided equally among the agents given positive
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utility to such good. Namely, given i 2 N and j 2M we de�ne:

Nj =
�
i 2 N : pij > 0

	
:

yij =

� 1
jNj jpjx

�
j if i 2 Nj

0 otherwise

f�2i (P ) =
X
j2M

yij:

This rule satis�es ef; iig and cu but fails ma:
Let f� be such that f�1 (P ) = x� for each problem P: Besides, the total

utility is divided as equal as possible among the agents in such a way that
no agent gets more than his maximum aspiration. Namely, given a problem
P and i 2 N;

f�2i (P ) = min fMAi (P ) ; �g where
X
i2N

f 2i (P ) =
X
i2N

ui (x
�) 2:

This rule satis�es ef; ma; and cu but fails iig:
Let f� be such that f�1 (P ) = x� for each problem P: Given i 2 N and

j 2M we de�ne:

M� =
�
j 2M : x�j > 0

	
;

FS� (P ) =

(
x :
X
j2M

wjxj � W and xj = 0 if j =2M�

)
yi = max

x2FS�(P )
ui (x)

Now, suppose that N = fi1; :::ing such that yi1 � yi2 ::: � yin : Notice that

2Notice that f�2 is de�ned as the constrained equal awards rule where the estate is the
total utility of x� and the claims are the maximum aspirations.
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ui (x
�) � yi �MAi (P ) for all i 2 N: We de�ne

f�2i1 (P ) = minfyi1j ;
X
i2N

ui (x
�)g:

f�2i2 (P ) = minfyi2j ;
X
i2N

ui (x
�)� f�2i1 (P )g:

...

f�2ih (P ) = minfyihj ;
X
i2N

ui (x
�)�

h�1X
r=1

f�2ir (P )g:

...

f�2in (P ) =
X
i2N

ui (x
�)�

n�1X
r=1

f�2ir (P ) :

This rule satis�es ef; ma; and iig but fails cu:
(3) f 0 satis�es ma and nas but fails ef:
f� satis�es ef and ma but fails nas:
f satis�es ef and nas but fails ma:

Proof of Proposition 3. (1) It is obvious that Sho satis�es ef:
sym: Assume that agents i and j are symmetric in P: Thus, they are sym-

metric in the optimistic game vo: Since the Shapley value satis�es symmetry,
both agents receive the same. Thus Sho satis�es sym:
mon. Let P , P 0 and i as in the de�nition of mon: Since the Shapley value

is an average of marginal contributions, it is enough to prove that for each
S � Nn fig ; we have that

voP (S [ fig)� voP (S) � voP 0 (S [ fig)� voP 0 (S) :

Since voP 0 (S) = v
o
P (S) it is enough to prove that v

o
P (S [ fig) � voP 0 (S [ fig) :

Notice that FS (P ) = FS (P 0) : Let y 2 FS (P ) be such that voP (S [ fig) =P
k2S[fig

P
j2M

pkjyj: Now,

voP (S [ fig) =
X

k2S[fig

X
j2M

pkjyj �
X

k2S[fig

X
j2M

p0kj yj

� max
x2FS(P 0)

X
k2S[fig

X
j2M

p0kj xj = v
o
P 0(S [ fig):
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dum: Assume that agent i is a dummy in P: Thus, agent i is a dummy
in the optimistic game vo: Since the Shapley value satis�es dummy, agent i
receives nothing. Thus Sho satis�es dum:
ma: Since the Shapley value is an average of marginal contributions, it is

enough to prove that for each problem P; each i 2 N; and each S � Nn fig
we have that voP (S [ fig)� voP (S) �MAi (P ) :
Let y; y0 2 FS (P ) be such that voP (S[fig) =

P
k2S[fig

P
j2M

pkjyj and v
o
P (S) =P

k2S

P
j2M

pkjy
0
j: Now,

voP (S [ fig)� voP (S) =
X

k2S[fig

X
j2M

pkjyj �
X
k2S

X
j2M

pkjy
0
j

=
X
j2M

pijyj +
X
k2S

X
j2M

pkjyj �
X
k2S

X
j2M

pkjy
0
j

By de�nition of y0;
P
k2S

P
j2M

pkjyj �
P
k2S

P
j2M

pkjy
0
j � 0: Then,

voP (S [ fig)� voP (S) �
X
j2M

pijyj � max
x2FS(P )

X
j2M

pijxj =MAi (P ) :

se: Let P be a problem and i 2 N: Since vo (i) = SEi (P )n and vo (S [ i) �
vo (S) we have that Sho2i (P ) � SEi (P ) :
ec: Let P be a problem and i; k 2 N: Let (N; voP ) be the corresponding

optimistic game. Myerson (1980) proved that the Shapley value satis�es
equal contributions in TU games. Then,

Shi (N; v
o
P )� Shi (Nn fkg ; voP ) = Shk (N; voP )� Shk (Nn fig ; voP ) :

Since Sho2i (P ) = Shi (N; v
o
P ) and Sh

o2
k (P ) = Shk (N; v

o
P ) ; it is enough to

prove that Sho2i
�
PNnfkg

�
= Shi (Nn fkg ; voP ) and Sho2k

�
PNnfig

�
= Shk (Nn fig ; voP ) :

We prove that Sho2i
�
PNnfkg

�
= Shi (Nn fkg ; voP ) (the other case is similar

and we omit it). Since Sho2i
�
PNnfkg

�
= Shi

�
Nn fkg ; vo

PNnfkg

�
, it is enough

to prove that for each T � Nn fkg ; voP (T ) = voPNnfkg (T ) : Notice that,

FS (P ) =

(
x :
X
j2M

wjxj � W and xj 2 [0; 1]8 j 2M
)
= FS

�
PNnfkg

�
:
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Then,

voP (T ) = max
x2FS(P )

X
i2T

ui (x) = max
x2FS(PNnfkg)

X
i2T

ui (x) = v
o
PNnfkg(S):

(2) It is obvious that Sho does not satisfy iig:
Consider Example 1: Since vo (1) = p1a and v

o (S [ 1) = vo (S) when
? 6= S � Nn f1g ; we have that Sho21 (P ) = Sh1 (vo) = 1

3
p1a:We take W1 = 2:

Since

voP (W1)
(1) = voP (W�W1;Sho1(P (W1)))

(1) = p1a;

voP (W1)
(S [ f1g) = voP (W1)

(S) and

voP (W�W1;Sho1(P (W1)))
(S [ f1g) = voP (W�W1;Sho1(P (W1)))

(S) when ? 6= S � Nn f1g ;

we have that

Sh1

�
voP (W�W1;Sho1(P (W1)))

�
= Sh1

�
voP (W1)

�
=
1

3
p1a:

Since,

Sho21 (P (W1)) + Sh
o2
1

�
P
�
W �W1; Sh

o1 (P (W1))
��
=
2

3
p1a;

we deduce that Sho does not satis�es cu:
Since Sho satis�es se and Proposition 1, we have that Sho does not satisfy

cs:
nas: It follows from Theorem 2 (3) and the fact that the Sho satis�es ef

and ma:
nam: Let P be such that N = f1; 2; 3g, M = fa; b; cg, W = 1 and wj = 1

for all j 2M: Besides the vector p satis�es the following conditions: p1a = 1
2
;

p1b = 0; p
1
c = 1; p

2
a = 1; p

2
b = 1, p

2
c = 0; p

3
a =

3
4
; p3b = 1 and p

3
c = 1: Thus,

T voP (T )
f1g 1
f2g 1
f3g 1
f1; 2g 3

2

f1; 3g 2
f2; 3g 2
N 9

4
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Then, Sho2 (P ) = Sh (voP ) =
�
2
3
; 2
3
; 11
12

�
: Therefore, Sho21 (P ) +Sh

o2
2 (P ) =

4
3
:
Assume that agents 1 and 2 merge in agent 1. Now N+ = f1; 3g, p+1 =

p1 + p2; and p+3 = p3: Then,

T voP+ (T )
f1g 3

2

f3g 1
N+ 9

4

Then Sho2 (P+) = Sh
�
voP+
�
=
�
11
8
; 7
8

�
:Then,

Sho21 (P ) + Sh
o2
2 (P ) =

4

3
<
11

8
= Sho21

�
P+
�
;

which implies Sho does not satisfy nam:

Proof of Theorem 3. By Proposition 3 we know that Sho satis�es ef and
ec:
We now prove the uniqueness. This proof is quite standard in the lit-

erature. Let f be a rule satisfying ef and ec: We prove it by induction on
n:
When n = 1; by ef; f1 (P ) = x� and f 21 (P ) = u1 (x

�) : Assume that the
result is true when we have less than n agents and we prove it for n: By ec;
for all i 2 Nn f1g ;

f 2i (P )� f 2i
�
PNnf1g

�
= f 21 (P )� f 21

�
PNnfig

�
)

f 2i (P )� f 21 (P ) = f 2i
�
PNnf1g

�
� f 21

�
PNnfig

�
)X

i2Nnf1g

f 2i (P )� (n� 1) f 21 (P ) =
X

i2Nnf1g

�
f 2i
�
PNnf1g

�
� f 21

�
PNnfig

��
)

X
i2N

f 2i (P )� nf21 (P ) =
X

i2Nnf1g

�
f 2i
�
PNnf1g

�
� f 21

�
PNnfig

��
:

Since f satis�es ef;
P
i2N

f 2i (P ) =
P
i2N

ui (x
�) :By induction hypothesis,P

i2Nnf1g

�
f 2i
�
PNnf1g

�
� f 21

�
PNnfig

��
is known. Then,

f 21 (P ) =

P
i2N

ui (x
�)�

P
i2Nnf1g

�
f 2i
�
PNnf1g

�
� f 21

�
PNnfig

��
n

:
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Thus, f 21 (P ) is uniquely determined. Let i 2 Nn f1g : By ec;

f 2i (P ) = f
2
i

�
PNnf1g

�
+ f 21 (P )� f 21

�
PNnfig

�
;

which means that f 2i (P ) is uniquely determined.
We now prove that the properties are independent.
f 0; de�ned as in Remark in the proof of Theorem 2, satis�es ec but fails

ef:
f�, de�ned as in Theorem 2, satis�es ef but fails ec:
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