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ABSTRACT
By using robustness methods we design HCRs that explicitly include scientific uncertainty.
Under scientific uncertainty —when the perceived model can be generated by a nearby op-
erating model- robust HCRs are designed assuming that the (inferred) operating model is
more persistent than the perceived model. As a result, a robust HCR has a steeper ratio
between fishing mortality and biomass than a non robust one. We prove that constant effort
HCRs are not robust. Moreover, rather than decreasing fishing mortality reference points
for exploitation, the optimal robust response to scientific uncertainty is to increases biomass
precautionary limit points when knowledge about the stock status decreases. Finally, we
show that robustness can be implemented if fishing mortality is increased faster than lin-
early —by a factor of 2-fold— when a stock is assessed as above 0.5Bygy. We illustrate our
findings by designing HCRs for 17 ICES stocks using this rule of thumb.
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1 Introduction

Scientific advice on fishery stocks is provided by evaluating the performance of the fishery
system relative to harvesting control rules (HCR) based on reference points. For example,
the International Council for the Exploration of the Sea (ICES) advises 250 stocks by using
a precautionary approach (PA) within a maximum sustainable yield (MSY) framework.!
To attain the long-term maximum yield, maintaining the stock above a limit point, By,
ICES uses the MSY advice rule: fishing mortality is set as Fiysy (F at which the maxi-
mum sustainable yield is achieved) if the spawning—stock biomass, B, is at or above the
MSY Biomass trigger point, Biigger, (the lower bound of spawning-stock biomass fluctua-
tion around Bjgy ); fishing mortality is reduced linearly if a stock is assessed to be below
Birigger, and finally, fishing mortality is set to zero if a stock is depleted below By, (see

Figure 1).

This HCR requires a relatively high level of data and knowledge on the dynamics of the
stocks concerned. As Punt and Donovan (2007) point out “uncertainty attributable to
lack of understanding of the true underlying system and to ineffective implementation may

dominate the sources of error that must be accounted for if management is to be successful”.

Unfortunately, the ICES MSY advice rule does not explicitly include any way of dealing
with those uncertainties. Therefore, under scientific uncertainty —i.e, when the data and
knowledge requirements are not fulfilled -ICES increases margins when knowledge about

2

the stock status decreases.” Based on experience obtained by using a simulation modeling

approach® lower reference points for exploitation — such as Fy;, for example- have been

'Recurring advice is provided to the European Commission, the North Atlantic Salmon Conservation
Organization (NASCO), and the North East Atlantic Fisheries Commission (NEAFC)). In addition to this
recurring advice ICES also provides advice in response to special requests from the Commissions mentioned
above and from the Helsinki Commission (HELCOM), the OSPAR Commission (OSPAR) and ICES Member
Countries.

2ICES Advice 2016, Book 1, http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/
2016/Introduction_to_advice_2016.pdf.

3Several stocks use FLR methodology — Kell et al. (2007)— to determine the effectiveness of this manage-
ment procedure.
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Figure 1: ICES MSY advice rule: the solid line represents the advice rule without scientific
uncertainty; the dashed line represents the advice rule with scientific uncertainty.

applied.*

In this paper we design HCRs that explicitly include scientific uncertainty. We assume
that managers understand that perceived dynamics -a version of Hannesson (1975) with
stochastic recruitment- is an approximation of the real (operating) model. Following the
idea of Fellner (1965) and Hansen and Sargent (2008), we characterize robust HCR by
distorting the perceived dynamics with the worst case estimate of the operating model.
In this context, a robust precautionary HCR is characterized by solving an extremization
problem: managers maximize the performance of the fishery assuming that a hypothetical
malevolent nature chooses the level of scientific uncertainty —the distortion of the operating

model- in order to minimize fishery performance.

What does this reveal? When managers are concerned about scientific uncertainty, they
know that a fraction of the volatility observed in the data is generated by the ignorance

of the observer. The size of that uncertainty, —when a hypothetical malevolent nature so

4Fy.1 is the value of F where the yield per recruit slope is 10 percent of the maximum yield per recruit
slope.



chooses — is proportional to the perceived recruitment shock. Therefore, they infer that the
operating model —which is generating the perceived recruitment shock— is more persistent
than the perceived model. As a result HCRs are designed by assuming a more persistent

process.

We prove that constant effort HCRs —which provide precautionary advice when recruitments
are uncorrelated- are not robust under scientific uncertainty. A robust HCR has a steeper
ratio between fishing mortality and biomass than a non-robust one. Rather than decreases
fishing mortality reference points for exploitation, the optimal robust response to scientific

uncertainty is to increase biomass limits when knowledge about the stock status decreases.

We illustrate our findings with a numerical example. We show that robustness can be
implemented if fishing mortality is increased faster than linearly —by a factor of 2-fold— when
a stock is assessed as above an endogenous robust limit point, 0.5Bysy. We illustrate our

findings by designing HCRs for 17 ICES stocks using this rule of thumb.

Our paper studies robust control in natural resources and is thus closely linked to Roseta-
Palma and Xepapadeas (2004), Athanassogloua and Xepapadeas (2012) and Xepapadeas
and Roseta-Palma (2013). However two key distinctions should be emphasized in our work:
First, we characterize robust HCRs in closed form. Second, we show that for log linear

dynamics a simple rule of thumb for robust HCRs can be obtained.

The rest of the paper is organized as follows: Section 2 describes the model. In Section 3 we
characterize robust HCRs. In Section 4 we derive a rule of thumb to reclassify the status of

40 ICES stocks. Section 5 concludes.



2 Model

We build on Da-Rocha and Mato-Amboage (2016). We consider a stochastic version of the
fishery of Hannesson (1975) with two age classes: juveniles and adults. Let Ny, and N;o
be the population of juveniles and adults in period ¢, respectively. Each year, t, a stochastic
exogenous number of juvenile fish are born, N;; = exp(z;), where z; is a random variable
that determines the recruitment of the fishery. The managers of the fishery perceive that

the stochastic recruitment process follows an AR(1) process,

Zip1 = Pz + Eg1, (1)

where ;. is a Gaussian i.i.d. process with zero mean and variance o2, and |p| € [0, 1) is the
correlation coefficient. Managers understand this perceived model as an approximation to
the actual operating model. Following Hansen and Sargent (2008), this scientific uncertainty

is represented with a set of alternative models of the form

241 = P2+ 1 T Wiy, (2)

where £, is another Gaussian i.i.d. process with zero mean and identity variance and w1
is a vector of perturbations in the mean of &,,, that can feed back on the history of the

state, z.

The dynamics of the second age group is then given by Nyy1o = Npje ™ where F,
represents the fishing mortality applied in period ¢t and m is the natural mortality rate,
which for the sake of simplicity is assumed to be constant over time. Finally, the spawning

stock biomass of the fishery is defined as B; = log Nt,2.5

5This equation implies that the spawning stock biomass is an increasing function of the number of adults
in the population and that only a non constant fraction of adults are spawners.



3 Robust HCRs

We assume that fishery managers want to design a precautionary robust HCR, A, to reach
an exogenous target, (B, Fiar) and avoid the risk of the stock dropping below a limit point,
Byim, subject to the stock dynamics. Given that they know that the perceived model (1) is an
approximation of the operating model, (2), they are aware of the dynamic misspecification
of the model (the scientific uncertainty). Therefore, fishery managers are looking for robust
HCRs that minimize the expected net present gap between the fishing mortality, F;, and

biomass, By, relative to the targets

EO i ﬁtJrl [(E - Ftar)2 + )\(Bt - Bta?’)ﬂ )

t=0

avoiding the risk of the stock dropping below a limit point®, By,
Pr(B < Byp) = v, (3)
admitting a certain scientific uncertainty level n, i.e.
B> 5w, = ()
t=0

The left hand side of equation (4), Ey Y .o, 8w, is an intertemporal measure of the
size of model misspecification —the conditional relative entropy. This constraint is used to
measure the statistical discrepancy between the perceived model (1) and the operating model
(2)." Therefore, equation (4) expresses the idea that managers know that the operating model
can be any nearby model around the perceived model. Greater scientific uncertainty implies

a larger set of alternative models. Therefore, n measures scientific uncertainty. Formally,

6ICES set v = 0.05, i.e. HCR is precautionary if the stock is above the limit point, By;,, with at least a
95% probability.
"See Hansen and Sargent (2008).



the conditional relative entropy is constrained to be lower than or equal to an exogenous

scientific uncertainty level 7.

We characterize the precautionary robust HCR in two steps. In the first step we solve an

extremization problem

max min Ey Z B {—(Ft — For)? = M By — Biar)* + 59Wt2+1} ; (5)
=0

{Fe, B2 {wer1}is

Biy1 = 2z — Fy —m,
s.t.

241 = P2+ €41 T Wit

Problem (5) highlights that a robust HCR is a decision where managers seek to maximize
their intertemporal target while a hypothetical malevolent nature minimizes that same target
by selecting the worst perturbation process. In the second step we find the HCR, A, and

the multiplier 6 (associated with the scientific uncertainty level, n) that satisfies Pr(B <

Blim) = v, and Ej Zfio Bt+1wt2+1 =n.

3.1 The extremization problem

The extremization problem (5) can be simplified with a change of variables, AF, = F, — Fi,,
and AB; = B; — By, and expressed as the following nonstochastic problem,

max min Z B {—=AF? — ANAB? + 86w}, }
=0

{AF,AB1 12 g {wer112

AByy1 = z — AF,
s.t.

Ziy1 = P2+ Wiy,



where €;,1 is set to zero in the second constraint by the modified certainty equivalent principle

that applies to robust control problems.®

Substituting the restrictions into the objective function, the problem can easily be converted
into an unconstrained optimization problem. Any solution for AF; and w;;; must be the

solution to the following two-period problem

max min —AF}? + 5‘9%2“ — BNz — AF)? — BPXNpz + w1 — AF )2

AF; wit

The first order conditions (f.o.c.) for this optimization problem are

—AE + ﬁ)\(Zt - AFt) = O,

Qw1 — BA(pze + w1 — AF) = 0.

Solving thess f.o.c.’s for AF; and wy, 1, and considering the first constraint of the nonstochas-

tic problem, we have

AR = P, (6)

ABra = o e (7)

W41 = 6(1 +pﬁﬁ)\))\ — 6/\23&- (8)

It is worth highlighting that the multiplier A = piﬁi_gi’ represents the HCR. Note that for

the uncorrelated process, p = 0, constant effort is an optimal rule, i.e. AF; = pSAB; = 0.

8 Hansen and Sargent (2008) show that the robust version of a stochastic optimal linear regulator can be
computed by its corresponding nonstochastic version.



3.2 Robust precautionary HCR

Given the solution of the extremization problem we solve for § and A using equations (3)

and (4). We start by substituting the first order condition (8) into (7), that is’

ABiy1 = pAB; + 1 jtﬁA’
where
. B 0(1+ BAN)
W00 =0 [ 5 ) )

Since ¢; is a Gaussian process, By, also follows a Gaussian distribution whose mean and

0_2

< . Therefore

(1+ 6221 = p?)

variance are given respectively by pp = Big,, and 0% =

1 Biim — 1B
Pr(B< By, ) == |1+erf( 2Em—HB | _
(B < Bun) 2{ e (ﬂan,A))] "

where erf is the Gaussian error function. Taking into account the mean and the variance of

the biomass equation (3) can be rewritten as:

12 o.erf 1 (20 — 1)y/2

(1+8)) (157 B — Do)

(10)

For a given, p, managers can prevent that biomass from dropping below Bj;,, with a prob-
ability v, if the harvest control rule \ satisfies equation (10). In order to compute p, we

generate the vector of perturbations in the mean of &4

_ PBA . PO
T G B BT P T By — A (11)

by using the worst-case nature response, equation (8). Note that conditional means are not

zero and can feed back on the history of the state, z. Therefore equation (4) can be written

9Note that we make use of z; = pz_1 +wy + € = pzi_1 + &4



aSlO

= B BA)0? B (p—p’o
n=Ey Y Bz, = 1 _ (pBA)* o =+ (»—p)

=0 —B(1=p?)[0(1+BA) — BA] -5

Notice that when managers are not concerned about scientific uncertainty (and n — 0),

p = p. However when managers are concerned about scientific uncertainty (and 7 is finite),

p > p meaning that the (inferred) operating model is more persistent than the perceived

one.

By solving equations (9), (10) and (12) it is possible to find the robust precautionary HCR.
Formally, for the scientific uncertainty level n and a precautionary level v, the robust pre-

cautionary HCR is given by

1| oeerf (20 —1)v2

—_ —1 ,
5 (Blzm - Btm") \V 1— [)2

(13)

where equation (12) determines p as a function of the scientific uncertainty level 7.

Note that under scientific uncertainty —when data can be generated by a nearby operating
model, at a distance n —, even for an uncorrelated perceived process, p = 0, robust HCR

is designed assuming the existence of persistence, i.e. p? = SR E—
() 2+

scientific uncertainty, a higher 7, is associated with a higher p? and a higher .

> 0. Greater

Two conclusions can be highlighted from the characterization of robust precautionary HCRs.
First, an HCR consisting of keeping fishing mortality constant at Fj,,. cannot be a robust

precautionary rule.

Proposition 1. A constant effort rule, F; = Fi,, is not a robust precautionary HCR.

Proof See Appendix A.1

ONotice that from (9) we make use of % = %.

10



Figure 2: Set of nearby operating models for which the decision rule will work well using the
perceived model. O and P stand for operating and perceived, respectively.

Constant effort HCRs, which can be good precautionary HCRs for uncorralated processes,
i.e p = 0, are not robust. Under scientific uncertainty it can be inferred that the operating
process is correlated, even when the stochastic process obtained form the perceived model
is not. Robustness implies the use of biomass based HCRs, A > 0. This result is consistent

with the numerical findings of Da-Rocha and Mato-Amboage (2016).

The sense in which a constant effort HCR generates a stock performance that is not robust
under scientific uncertainty can be ilustrated. A naive manager considers that perceived
model (1) generates the data. Under this assumption, a constant effort HCR can achieve

a precautionary level v by using a constant effort HCR, AN® = 0, when a process with
(Blim — Btar) (1 - ,02>
erf (20 — 1)v/2

process is uncorrelated, p = 0, the expected Biomass volatility—based on naive expectations—

is expected.!! When the perceived

correlation p and variance o, =

2

2

is ok =0

However, data are generated by the operating model (2) by chosing w,,1 using equation (8),

and the mean of the perceived model (1) &, is perturbed by the process given by equation

2
02 12

1—p2

(11). Biomass volatility —generated by the operating model — is 0% =

Managers concerned with robustness seek an HCR that is reliable for all close operating

HNote that variance is given by solving equation (13) for p and A = 0.
12When &, is perturbed, biomass evolves following AB; 1 = Az; = pAzs_1 + wier = pAB; + 64 1.

11
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0.25" Robust HCR, A > 0, p=0.5

Ilm)

" Naive HCR, A=0, p=0

Pr (B<B,

015+

0.05

0 0.5 1
p associated with operating model

Figure 3: Risk of biomass dropping below By, for a naive HCR, A = 0 (equation 15) and a
robust HCR, A > 0 (equation 14). The robust HCR was designed by assuming p to be 0.5.
Notice that when the correlation generated by the operating model is 0.5 the probability of
the biomass dropping below By, is exactly v = 0.05.

models (2) in the set displayed in Figure 2. This is equivalent to designing an HCR by
assuming that p > p = 0. The robust HCR, given by equation (13), is equal to \? =

1 1
= [— — 1| > 0, and generates a risk measure equal to

Blva-r?)

Pr(B < Bup) = % [1 + erf ((1 FARB) /(T = pRert (20 — 1))] . (14)

Figure 3 show how naive HCR performance deteriorates more quickly than robust HCR rules

as scientific uncertainty (the correlation generated by the perturbation process, p) increases.

12
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@
Blz’m BI])\[ZR Bﬁl Btar B

Figure 4: Robust HCR versus non-robust HCR. Robust design of HCR leads to higher pre-
cautionary biomass. BI])\;R and B]ﬁ stand for non-robust and robust precautionary biomass,
respectively.

When the naive constant effort rule is applied the precautionary constraint is violated, i.e.

Pr(B < Bym) = [1 + erf< (1 — pPerf (20 — 1))} > . (15)

N | —

HCR reduces precautionary levels (low v’s), when the perceived model is correct. However,

the performance becomes more precautionar as scientific uncertainty increases.

Second, how much faster fishing mortality is reduced if a stock is assessed to be below the
target biomass depends on the level of scientific uncertainty. Proposition 2 establishes a
precautionary management procedure: the higher concern about scientific uncertainty is the

higher the proportionality is between biomass and fishing mortality in the HCR.

Proposition 2. Greater scientific uncertainty levels imply: i) a steeper relationship between
biomass and robust fishing mortality in the harvesting control rule, and ii) higher precau-

tionary biomass, i.e By, = Biar — Fiar/pBA .

Proof See Appendix A.2.

13



Figure 4 compares robust and non robust precautionary HCRs. For the same precautionary
criteria (given by By, and v) the robust HCR selects higher A and B,,, than the non-robust
HCR.

4 A robust rule of thumb for ICES

To compute robust precautionary HCR time series data are needed —for each stock— to
compute o., p, Byi. However, if the idea is only to explore the impact of scientific uncertainty

—for the given levels of v— there is no need to compute these statistics.

Assume that a stock has been assessed as above Bligger, and the ICES MSY (constant effort)

advice rule has been applied. In that case, (see Appendix A.3), the robust precautionary

~

O—0

HCR satisfies A = . Robutness is proportional to the difference between the standard

o
deviation of the perceived model and the variance associated with the vector of perturbations,

0.

Assume that A is set to 2. In that case, ¢ = 30, which is the three-sigma rule which
guarantees that 99.7% of random events lie around the mean of its normal distribution, (see
Pukelsheim (1994)). According to this rule B,, = 0.5Bygy. By setting A = 2 a rule of thumb
can be defined for robustness: fishing mortality is increased faster than linearly —by a factor

of 2-fold— when a stock is assessed as above an endogenous robust limit point —0.5Bysy.

We compare robust HCRs with the MSY ICES advice rule for 17 ICES stocks. For those
stocks ICES provides Fiim, Fpa, Biim, Bpa, Fusy and MSYByigeer (see Table 3). Therefore,

14



the ICES MSY advice rule can be computed, i.e.

: B
1 1f MSYBtrigger Z 1,

F dvice = £ B—Biim lf B Biim 1 ]_6
advice MSY Birigger —Biim Bumsy < (BMSY’ )’ ( )
3 B Bl

if o
\ 0 Bumsy Bumsy

We compute the robust HCR by applying the rule of thumb associated with A = 2, i.e

B : B
142 x (m _ 1) it 52 >05,
Frobust = (17)

0 if —B— <0.5.

Bumsy

ICES does not provide Bygy. We approximate this value by exploiting the fact that for all
those stocks the ICES sets MSYByyigeer €qual to Bp,. Therefore, we compute a Bygy proxy

using Fygy and Fp,. We assume that Bygy = [1 + W] X MSY Birigger-

Figure 5 compares the two HCRs and Table 1 shows the resulting advice —the fishing mortal-
ity rate recommended for exploitation by each HCR~ associated with the 2014 biomass level.

The robust HCR provides more precautionary advice for stocks assessed as below Bysy.

For stocks assessed as above Bygy the ICES MSY advice rule recommends lower fishing
mortality rates than advice based on the robust rule of thumb. It is worth highlighting that
—in general- systems are not in equilibrium and fishing mortality rates higher than Fysy

generate higher total allowed catches (T.A.C.s).

15



Table 1: ICES MSY advice vs Robust HCR

Robust HCR MSY ICES advice rule

FiShStOCk(*) B/BMSY Frobust (1) Blim/MSYBtrigger B/MSYBtrigger Fadvice (2)
cod-arct 3.91 6.82 0.48 3.91 1.00
whb-comb 2.29 3.58 0.67 2.43 1.00
ple-nsea 1.84 2.68 0.70 2.91 1.00
spr-2232 1.45 1.89 0.72 1.58 1.00
sai-faro 1.27 1.54 0.00 1.27 1.00
her-2532-gor 1.05 1.10 0.72 1.43 1.00
sol-eche 0.99 0.98 0.00 1.26 1.00
sol-celt 0.94 0.87 0.00 1.09 1.00
her-noss 0.81 0.63 0.50 0.81 0.63
sai-3a46 0.76 0.51 0.53 0.94 0.88
sol-bisc 0.71 0.42 0.00 0.98 0.98
cod-farp 0.59 0.17 0.53 0.64 0.23
had-faro 0.47 0 0.63 0.47 0
sol-kask 0.40 0 0.60 0.54 0
sol-iris 0.26 0 0.71 0.38 0
cod-347d 0.26 0 0.47 0.46 0
had-rock 0.20 0 0.67 0.30 0

(*) FishStock is described in Table 2.
(1) computed using equation (17);
(2) computed using equation (16).

16
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5 Conclusions

In this paper we show that scientific uncertainty can be treated analytically by using simple
calculus. We reveal that constant effort HCRs are not robust under scientific uncertainty.
Moreover, the best way to deal with scientific uncertainty is to increases the (endogenous)
precautionary biomass levels obtained by using the reference points. That is, by contrast
with standard practice ~where the safety margin is taken as B, = 1.4By, =~ (1 + 0) Blim—

the sources of uncertainty can be decreased by defining intervals around the reference points.

But how robust are our findings? The class of perturbations considered is very general. As
Hansen and Sargent (2008) point out —for Linear Quadratic (LQ) problems— they include
unknown parameter values, misspecfication of higher moments of the error distribution, and
various kinds of ‘structured uncertainty’. Therefore, scientific uncertainty in our model in-
cludes all the sources of uncertainty classified by Francis and Shotton (1997), i.e. observation,
model structure, process error and implementation errors. Our findings can therefore be ap-
plied in case studies where different sources of uncertainty are included to evaluate different

management strategies (MSE) by using a simulation modeling approach.
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A Appendix

A.1 Proof of Lemma 1

For any accuracy level, n, equation (12) implies p > p = 0. Thus, a robust HCR, given by equation

(13), has A > 0 and F; = Fj4, and cannot be a robust precautionary rule. B

A.2 Proof of Lemma 2

It is straightforward to check in equation (1) that when 1 = 0, p? = p? and when n — oo, p? = 1.
Taking this into account A increases with scientific uncertainty (and goes to infinity, A — oo, when

1 — 00). Finally, it is clear that Bpq = Biar — Fiar/pSA increases when A and p increases. B

A.3 A rule of thumb

If managers are not concerned about misspecification (§ — oo or equivalently n = 0 ), the auto-

correlation coefficient of recruitment is p = p. In this context, selecting A = 0 implies, according

Blzm Btar)\/ (]- p
V2erf~1 (20-1)

and the variance of the

o (13), a standard deviation for the residuals of . =

biomass is therefore given by 0% = 52/(1 — p?).

However, if there is misspecification and nature chooses w;y1 # 0, then p > p, A > 0 and the
biomass variance is instead 0% = 72/(1 + BA)?(1 — p*). The risk of biomass dropping below By,

is then given by

1 Geerf 1(20 — 1 1
Pr(B < Bzz‘m):2[1+erf<aser (20 )>]—

op(l — p2)1/2 D)

_aa 1/2
1+ (20— 1)(1 + BN) G—Z?) ]

If the HCR is selected to guarantee that the risk of biomass dropping below By, is v,i.e. then the

1/2
robust \ satisfies Pr(B < Bjj,) = v, i.e. 1 — A = < ) . This condition can be expressed

1/2 ~
1—p? oc—0
A= —-1= .
> f (1—;32) -

1-p°
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